Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1199c33b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1199c33b
编写于
7月 01, 2019
作者:
J
jerrywgz
提交者:
GitHub
7月 01, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix model zoo doc (#2629)
* fix model zoo doc
上级
da2aac1d
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
31 addition
and
570 deletion
+31
-570
configs/faster_rcnn_se154_vd_1x.yml
configs/faster_rcnn_se154_vd_1x.yml
+0
-122
configs/faster_rcnn_se154_vd_fpn_1x.yml
configs/faster_rcnn_se154_vd_fpn_1x.yml
+0
-140
configs/faster_rcnn_se154_vd_fpn_s1x.yml
configs/faster_rcnn_se154_vd_fpn_s1x.yml
+1
-1
configs/faster_rcnn_x101_64x4d_fpn_1x.yml
configs/faster_rcnn_x101_64x4d_fpn_1x.yml
+0
-139
configs/faster_rcnn_x101_64x4d_fpn_2x.yml
configs/faster_rcnn_x101_64x4d_fpn_2x.yml
+0
-139
docs/MODEL_ZOO.md
docs/MODEL_ZOO.md
+30
-29
未找到文件。
configs/faster_rcnn_se154_vd_1x.yml
已删除
100644 → 0
浏览文件 @
da2aac1d
architecture
:
FasterRCNN
train_feed
:
FasterRCNNTrainFeed
eval_feed
:
FasterRCNNEvalFeed
test_feed
:
FasterRCNNTestFeed
max_iters
:
180000
snapshot_iter
:
10000
use_gpu
:
true
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
weights
:
output/faster_rcnn_se154_1x/model_final
metric
:
COCO
FasterRCNN
:
backbone
:
SENet
rpn_head
:
RPNHead
roi_extractor
:
RoIAlign
bbox_head
:
BBoxHead
bbox_assigner
:
BBoxAssigner
SENet
:
depth
:
152
feature_maps
:
4
freeze_at
:
2
group_width
:
4
groups
:
64
norm_type
:
affine_channel
variant
:
d
SENetC5
:
depth
:
152
freeze_at
:
2
group_width
:
4
groups
:
64
norm_type
:
affine_channel
variant
:
d
RPNHead
:
anchor_generator
:
anchor_sizes
:
[
32
,
64
,
128
,
256
,
512
]
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
stride
:
[
16.0
,
16.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
2000
pre_nms_top_n
:
12000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
1000
pre_nms_top_n
:
6000
RoIAlign
:
resolution
:
7
sampling_ratio
:
0
spatial_scale
:
0.0625
BBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
0.1
,
0.1
,
0.2
,
0.2
]
bg_thresh_hi
:
0.5
bg_thresh_lo
:
0.0
fg_fraction
:
0.25
fg_thresh
:
0.5
num_classes
:
81
BBoxHead
:
head
:
SENetC5
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
num_classes
:
81
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
FasterRCNNTrainFeed
:
# batch size per device
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
num_workers
:
2
FasterRCNNEvalFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
num_workers
:
2
FasterRCNNTestFeed
:
batch_size
:
1
dataset
:
annotation
:
annotations/instances_val2017.json
num_workers
:
2
configs/faster_rcnn_se154_vd_fpn_1x.yml
已删除
100644 → 0
浏览文件 @
da2aac1d
architecture
:
FasterRCNN
train_feed
:
FasterRCNNTrainFeed
eval_feed
:
FasterRCNNEvalFeed
test_feed
:
FasterRCNNTestFeed
max_iters
:
180000
snapshot_iter
:
10000
use_gpu
:
true
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
weights
:
output/faster_rcnn_se154_fpn_1x/model_final
metric
:
COCO
FasterRCNN
:
backbone
:
SENet
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
BBoxHead
bbox_assigner
:
BBoxAssigner
SENet
:
depth
:
152
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
group_width
:
4
groups
:
64
norm_type
:
affine_channel
variant
:
d
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
anchor_sizes
:
[
32
,
64
,
128
,
256
,
512
]
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
stride
:
[
16.0
,
16.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
2000
pre_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
1000
pre_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
box_resolution
:
7
sampling_ratio
:
2
BBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
0.1
,
0.1
,
0.2
,
0.2
]
bg_thresh_hi
:
0.5
bg_thresh_lo
:
0.0
fg_fraction
:
0.25
fg_thresh
:
0.5
num_classes
:
81
BBoxHead
:
head
:
TwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
num_classes
:
81
TwoFCHead
:
num_chan
:
1024
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.1
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
FasterRCNNTrainFeed
:
# batch size per device
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
image_dir
:
train2017
annotation
:
annotations/instances_train2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
FasterRCNNEvalFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
FasterRCNNTestFeed
:
batch_size
:
1
dataset
:
annotation
:
annotations/instances_val2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
configs/faster_rcnn_se154_vd_fpn_s1x.yml
浏览文件 @
1199c33b
...
@@ -8,7 +8,7 @@ use_gpu: true
...
@@ -8,7 +8,7 @@ use_gpu: true
log_smooth_window
:
20
log_smooth_window
:
20
save_dir
:
output
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
weights
:
output/faster_rcnn_se154_fpn_s1x/model_final
weights
:
output/faster_rcnn_se154_
vd_
fpn_s1x/model_final
metric
:
COCO
metric
:
COCO
FasterRCNN
:
FasterRCNN
:
...
...
configs/faster_rcnn_x101_64x4d_fpn_1x.yml
已删除
100644 → 0
浏览文件 @
da2aac1d
architecture
:
FasterRCNN
train_feed
:
FasterRCNNTrainFeed
eval_feed
:
FasterRCNNEvalFeed
test_feed
:
FasterRCNNTestFeed
max_iters
:
180000
snapshot_iter
:
10000
use_gpu
:
true
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
weights
:
output/faster_rcnn_x101_64x4d_fpn_1x/model_final
metric
:
COCO
FasterRCNN
:
backbone
:
ResNeXt
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
BBoxHead
bbox_assigner
:
BBoxAssigner
ResNeXt
:
depth
:
101
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
group_width
:
4
groups
:
64
norm_type
:
affine_channel
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
anchor_sizes
:
[
32
,
64
,
128
,
256
,
512
]
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
stride
:
[
16.0
,
16.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
2000
pre_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
1000
pre_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
box_resolution
:
7
sampling_ratio
:
2
BBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
0.1
,
0.1
,
0.2
,
0.2
]
bg_thresh_hi
:
0.5
bg_thresh_lo
:
0.0
fg_fraction
:
0.25
fg_thresh
:
0.5
num_classes
:
81
BBoxHead
:
head
:
TwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
num_classes
:
81
TwoFCHead
:
num_chan
:
1024
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
FasterRCNNTrainFeed
:
# batch size per device
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
image_dir
:
train2017
annotation
:
annotations/instances_train2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
FasterRCNNEvalFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
FasterRCNNTestFeed
:
batch_size
:
1
dataset
:
annotation
:
annotations/instances_val2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
configs/faster_rcnn_x101_64x4d_fpn_2x.yml
已删除
100644 → 0
浏览文件 @
da2aac1d
architecture
:
FasterRCNN
train_feed
:
FasterRCNNTrainFeed
eval_feed
:
FasterRCNNEvalFeed
test_feed
:
FasterRCNNTestFeed
max_iters
:
180000
snapshot_iter
:
10000
use_gpu
:
true
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
weights
:
output/faster_rcnn_x101_64x4d_fpn_2x/model_final
metric
:
COCO
FasterRCNN
:
backbone
:
ResNeXt
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
BBoxHead
bbox_assigner
:
BBoxAssigner
ResNeXt
:
depth
:
101
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
group_width
:
4
groups
:
64
norm_type
:
affine_channel
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
anchor_sizes
:
[
32
,
64
,
128
,
256
,
512
]
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
stride
:
[
16.0
,
16.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
2000
pre_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
post_nms_top_n
:
1000
pre_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
box_resolution
:
7
sampling_ratio
:
2
BBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
0.1
,
0.1
,
0.2
,
0.2
]
bg_thresh_hi
:
0.5
bg_thresh_lo
:
0.0
fg_fraction
:
0.25
fg_thresh
:
0.5
num_classes
:
81
BBoxHead
:
head
:
TwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
num_classes
:
81
TwoFCHead
:
num_chan
:
1024
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
240000
,
320000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
FasterRCNNTrainFeed
:
# batch size per device
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
image_dir
:
train2017
annotation
:
annotations/instances_train2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
FasterRCNNEvalFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
FasterRCNNTestFeed
:
batch_size
:
1
dataset
:
annotation
:
annotations/instances_val2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
docs/MODEL_ZOO.md
浏览文件 @
1199c33b
...
@@ -30,57 +30,58 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
...
@@ -30,57 +30,58 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
### Faster & Mask R-CNN
### Faster & Mask R-CNN
| Backbone | Type | Im
g
/gpu | Lr schd | Box AP | Mask AP | Download |
| Backbone | Type | Im
age
/gpu | Lr schd | Box AP | Mask AP | Download |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50 | Faster | 1 | 1x | 35.2 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar
)
|
| ResNet50 | Faster | 1 | 1x | 35.2 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar
)
|
| ResNet50 | Faster | 1 | 2x | 37.1 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar
)
|
| ResNet50 | Faster | 1 | 2x | 37.1 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar
)
|
| ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar
)
|
| ResNet50 | Mask | 1 | 1x | 36.5 | 32.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar
)
|
| ResNet50 | Mask | 1 | 2x | | |
[
model
](
)
|
| ResNet50-vd | Faster | 1 | 1x | 36.4 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar
)
|
| ResNet50-D | Faster | 1 | 1x | 36.4 | - |
[
model
](
ttps://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar
)
|
| ResNet50-FPN | Faster | 2 | 1x | 37.2 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar
)
|
| ResNet50-FPN | Faster | 2 | 1x | 37.2 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar
)
|
| ResNet50-FPN | Faster | 2 | 2x | 37.7 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar
)
|
| ResNet50-FPN | Faster | 2 | 2x | 37.7 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar
)
|
| ResNet50-FPN | Mask | 2 | 1x | 37.9 | 34.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar
)
|
| ResNet50-FPN | Mask | 2 | 1x | 37.9 | 34.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar
)
|
| ResNet50-FPN | Cascade Faster | 2 | 1x | 40.9 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar
)
|
| ResNet50-FPN | Cascade Faster | 2 | 1x | 40.9 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar
)
|
| ResNet50-
D-FPN
| Faster | 2 | 2x | 38.9 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar
)
|
| ResNet50-
vd-FPN
| Faster | 2 | 2x | 38.9 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar
)
|
| ResNet50-
D-FPN
| Mask | 2 | 2x | 39.8 | 35.4 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar
)
|
| ResNet50-
vd-FPN
| Mask | 2 | 2x | 39.8 | 35.4 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar
)
|
| ResNet101 | Faster | 1 | 1x | 38.3 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar
)
|
| ResNet101 | Faster | 1 | 1x | 38.3 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar
)
|
| ResNet101-FPN | Faster | 1 | 1x | 38.7 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar
)
|
| ResNet101-FPN | Faster | 1 | 1x | 38.7 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar
)
|
| ResNet101-FPN | Faster | 1 | 2x | 39.1 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar
)
|
| ResNet101-FPN | Faster | 1 | 2x | 39.1 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar
)
|
| ResNet101-FPN | Mask | 1 | 1x | 39.5 | 35.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar
)
|
| ResNet101-FPN | Mask | 1 | 1x | 39.5 | 35.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar
)
|
| ResNet101-
D-FPN
| Faster | 1 | 1x | 40.0 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar
)
|
| ResNet101-
vd-FPN
| Faster | 1 | 1x | 40.0 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar
)
|
| ResNet101-
D-FPN
| Faster | 1 | 2x | 40.6 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar
)
|
| ResNet101-
vd-FPN
| Faster | 1 | 2x | 40.6 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar
)
|
| SENet154-
D-FPN | Faster | 1 | 1.44x | 43.5 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154
_fpn_s1x.tar
)
|
| SENet154-
vd-FPN | Faster | 1 | 1.44x | 42.9 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd
_fpn_s1x.tar
)
|
| SENet154-
D-FPN
| Mask | 1 | 1.44x | 44.0 | 38.7 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar
)
|
| SENet154-
vd-FPN
| Mask | 1 | 1.44x | 44.0 | 38.7 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar
)
|
### Yolo v3
### Yolo v3
| Backbone | Size | Im
g
/gpu | Lr schd | Box AP | Download |
| Backbone | Size | Im
age
/gpu | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53 | 608 | 8 |
12
0e | 38.9 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
)
|
| DarkNet53 | 608 | 8 |
27
0e | 38.9 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
)
|
| DarkNet53 | 416 | 8 |
12
0e | 37.5 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
)
|
| DarkNet53 | 416 | 8 |
27
0e | 37.5 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
)
|
| DarkNet53 | 320 | 8 |
12
0e | 34.8 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
)
|
| DarkNet53 | 320 | 8 |
27
0e | 34.8 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
)
|
| MobileNet-V1 | 608 | 8 |
12
0e | 29.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1 | 608 | 8 |
27
0e | 29.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1 | 416 | 8 |
12
0e | 29.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1 | 416 | 8 |
27
0e | 29.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1 | 320 | 8 |
12
0e | 27.1 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1 | 320 | 8 |
27
0e | 27.1 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| ResNet34 | 608 | 8 |
12
0e | 36.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | 608 | 8 |
27
0e | 36.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | 416 | 8 |
12
0e | 34.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | 416 | 8 |
27
0e | 34.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | 320 | 8 |
12
0e | 31.4 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | 320 | 8 |
27
0e | 31.4 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
**NOTE**
: Yolo v3 trained in 8 GPU with total batch size as 64
. Yolo v3 training data augmentations: mixup image,
**NOTE**
: Yolo v3 trained in 8 GPU with total batch size as 64
and trained 270 epoches. Yolo v3 training data augmentations: mixup,
random
distort image, random crop image, random expand image, random interpolate, random flip image
.
random
ly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling
.
### RetinaNet
### RetinaNet
| Backbone | Size | Lr schd | Box AP | Download |
| Backbone | Image/gpu | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :----: | :-------: |
| :----------- | :-----: | :-----: | :----: | :-------: |
| ResNet50-FPN | 300 | 120e | 36.0 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar
)
|
| ResNet50-FPN | 2 | 1x | 36.0 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar
)
|
| ResNet101-FPN | 300 | 120e | 37.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar
)
|
| ResNet101-FPN | 2 | 1x | 37.3 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar
)
|
**Notes:**
In RetinaNet, the base LR is changed to 0.01 for minibatch size 16.
### SSD on PascalVOC
### SSD on PascalVOC
| Backbone | Size | Im
g
/gpu | Lr schd | Box AP | Download |
| Backbone | Size | Im
age
/gpu | Lr schd | Box AP | Download |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| MobileNet v1 | 300 | 32 | 120e | 73.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar
)
|
| MobileNet v1 | 300 | 32 | 120e | 73.2 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar
)
|
**NOTE**
: SSD trained in 2 GPU with totoal batch size as 64
. SSD training data augmentations: random distort image,
**NOTE**
: SSD trained in 2 GPU with totoal batch size as 64
and trained 120 epoches. SSD training data augmentations: randomly color distortion,
random
crop image, random expand image, random flip image
.
random
ly cropping, randomly expansion, randomly flipping
.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录