Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
11975b4f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
11975b4f
编写于
8月 13, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Conv3DLayer
上级
5d7f6dde
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
282 addition
and
0 deletion
+282
-0
paddle/gserver/layers/Conv3DLayer.cpp
paddle/gserver/layers/Conv3DLayer.cpp
+225
-0
paddle/gserver/layers/Conv3DLayer.h
paddle/gserver/layers/Conv3DLayer.h
+57
-0
未找到文件。
paddle/gserver/layers/Conv3DLayer.cpp
0 → 100644
浏览文件 @
11975b4f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "Conv3DLayer.h"
namespace
paddle
{
REGISTER_LAYER
(
conv3d
,
Conv3DLayer
);
bool
Conv3DLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
int
index
=
0
;
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
M_
.
push_back
(
numFilters_
/
conf
.
groups
());
K_
.
push_back
(
conf
.
filter_channels
()
*
conf
.
filter_size_z
()
*
\
conf
.
filter_size_y
()
*
conf
.
filter_size
());
weights_
[
index
]
->
getW
()
->
reshape
(
weights_
[
index
]
->
getW
()
->
getWidth
(),
weights_
[
index
]
->
getW
()
->
getHeight
());
weights_
[
index
]
->
getWGrad
()
->
reshape
(
weights_
[
index
]
->
getWGrad
()
->
getWidth
(),
weights_
[
index
]
->
getWGrad
()
->
getHeight
());
++
index
;
}
biases_
->
getWGrad
()
->
reshape
(
biases_
->
getWGrad
()
->
width_
,
biases_
->
getWGrad
()
->
height_
);
biases_
->
getW
()
->
reshape
(
biases_
->
getW
()
->
width_
,
biases_
->
getW
()
->
height_
);
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
return
true
;
}
size_t
Conv3DLayer
::
getSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
// imgSizeH_.clear();
// imgSizeW_.clear();
// imgSizeD_.clear();
outputH_
.
clear
();
outputW_
.
clear
();
outputD_
.
clear
();
N_
.
clear
();
size_t
layerSize
=
0
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
true
));
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
true
));
outputD_
.
push_back
(
outputSize
(
imgSizeD_
[
i
],
filterSizeZ_
[
i
],
paddingZ_
[
i
],
strideZ_
[
i
],
true
));
N_
.
push_back
(
outputD_
[
i
]
*
outputH_
[
i
]
*
outputW_
[
i
]);
CHECK
(
layerSize
==
0
||
N_
[
i
]
*
size_t
(
numFilters_
)
==
layerSize
);
layerSize
+=
N_
[
i
]
*
numFilters_
;
}
getOutput
().
setFrameHeight
(
outputH_
[
0
]);
getOutput
().
setFrameWidth
(
outputW_
[
0
]);
getOutput
().
setFrameDepth
(
outputD_
[
0
]);
return
layerSize
;
}
void
Conv3DLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
outWidth
=
getSize
();
resetOutput
(
batchSize
,
outWidth
);
const
MatrixPtr
outMat
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
REGISTER_TIMER_INFO
(
"FwdConv3D"
,
getName
().
c_str
());
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
int
width
=
inMat
->
getWidth
();
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
colBuf_
->
vol2Col
(
inMat
->
getData
()
+
n
*
width
,
channels_
[
i
],
imgSizeD_
[
i
],
imgSizeH_
[
i
],
imgSizeW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
]);
real
*
outData
=
outMat
->
getData
()
+
n
*
outWidth
;
MatrixPtr
outMatSub
=
Matrix
::
create
(
outData
,
groups_
[
i
]
*
M
,
N
,
false
,
useGpu_
);
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
M
,
M
);
MatrixPtr
in
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
out
=
outMatSub
->
subMatrix
(
g
*
M
,
M
);
out
->
mul
(
*
wMatSub
,
*
in
,
1.0
,
0.0
);
}
}
}
if
(
nullptr
!=
this
->
biasParameter_
)
{
REGISTER_TIMER_INFO
(
"FwBiasTimer"
,
getName
().
c_str
());
this
->
addBias
();
}
forwardActivation
();
}
void
Conv3DLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
bpropBiases
();
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
REGISTER_TIMER_INFO
(
"BwdConv3D"
,
getName
().
c_str
());
if
(
weights_
[
i
]
->
getWGrad
())
{
bpropWeights
(
i
);
}
if
(
this
->
needGradient_
)
{
bpropData
(
i
);
}
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
Conv3DLayer
::
bpropWeights
(
int
i
)
{
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
int
width
=
inMat
->
getWidth
();
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
wGradMat
=
weights_
[
i
]
->
getWGrad
();
real
*
outGradData
=
getOutputGrad
()
->
getData
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
colBuf_
->
vol2Col
(
inMat
->
getData
()
+
n
*
width
,
channels_
[
i
],
imgSizeD_
[
i
],
imgSizeH_
[
i
],
imgSizeW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
]);
outGradData
+=
n
*
getOutputGrad
()
->
getWidth
();
MatrixPtr
outGradSub
=
Matrix
::
create
(
outGradData
,
groups_
[
i
]
*
M
,
N
,
false
,
useGpu_
);
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
inMatSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
outG
=
outGradSub
->
subMatrix
(
g
*
M
,
M
);
MatrixPtr
wGradSub
=
wGradMat
->
subMatrix
(
g
*
M
,
M
);
wGradSub
->
mul
(
*
outG
,
*
(
inMatSub
->
getTranspose
()),
1.0
,
1.0
);
}
}
}
void
Conv3DLayer
::
bpropData
(
int
i
)
{
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
real
*
outGradData
=
getOutputGrad
()
->
getData
();
real
*
preGradData
=
getInputGrad
(
i
)
->
getData
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
outGradData
+=
n
*
getOutputGrad
()
->
getWidth
();
preGradData
+=
n
*
getInputGrad
(
i
)
->
getWidth
();
MatrixPtr
outGradSub
=
Matrix
::
create
(
outGradData
,
M
*
groups_
[
i
],
N
,
false
,
useGpu_
);
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
M
,
M
);
MatrixPtr
outG
=
outGradSub
->
subMatrix
(
g
*
M
,
M
);
MatrixPtr
inGradMatSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
inGradMatSub
->
mul
(
*
(
wMatSub
->
getTranspose
()),
*
outG
,
1.0
,
0.0
);
}
colBuf_
->
col2Vol
(
preGradData
,
channels_
[
i
],
imgSizeD_
[
i
],
imgSizeH_
[
i
],
imgSizeW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
],
1.0
,
1.0
);
}
}
void
Conv3DLayer
::
bpropBiases
()
{
MatrixPtr
outGradMat
=
getOutputGrad
();
if
(
this
->
sharedBiases_
)
{
biases_
->
getWGrad
()
->
collectSharedBias
(
*
outGradMat
,
1.0
f
);
}
else
{
biases_
->
getWGrad
()
->
collectBias
(
*
outGradMat
,
1.0
f
);
}
}
void
Conv3DLayer
::
addBias
()
{
MatrixPtr
outMat
=
getOutputValue
();
if
(
this
->
sharedBiases_
)
{
outMat
->
addSharedBias
(
*
(
biases_
->
getW
()),
1.0
f
);
}
else
{
outMat
->
addBias
(
*
(
biases_
->
getW
()),
1.0
f
);
}
}
}
// namespace paddle
paddle/gserver/layers/Conv3DLayer.h
0 → 100644
浏览文件 @
11975b4f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/MathUtils.h"
#include <vector>
namespace
paddle
{
/**
* @brief A subclass of convolution layer.
* This layer expands input and use matrix multiplication to
* calculate convolution operation.
*/
class
Conv3DLayer
:
public
ConvBaseLayer
{
public:
explicit
Conv3DLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
Conv3DLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
size_t
getSize
();
void
forward
(
PassType
passType
);
void
addBias
();
void
backward
(
const
UpdateCallback
&
callback
);
void
bpropBiases
();
void
bpropData
(
int
i
);
void
bpropWeights
(
int
i
);
protected:
// Figure out the dimensions for individual gemms.
IntV
M_
;
/// numFilters_ / filter_group_;
IntV
N_
;
/// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
IntV
K_
;
/// outputD_ * outputH_ * outputW_
MatrixPtr
colBuf_
;
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录