Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
10ececb2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
10ececb2
编写于
3月 18, 2019
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into fix_sequence_pad_2
上级
802b3348
8ea4218c
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
230 addition
and
70 deletion
+230
-70
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-3
python/paddle/fluid/contrib/utils/lookup_table_utils.py
python/paddle/fluid/contrib/utils/lookup_table_utils.py
+227
-67
未找到文件。
paddle/fluid/API.spec
浏览文件 @
10ececb2
...
@@ -393,9 +393,9 @@ paddle.fluid.contrib.MagnitudePruner.__init__ (ArgSpec(args=['self', 'threshold'
...
@@ -393,9 +393,9 @@ paddle.fluid.contrib.MagnitudePruner.__init__ (ArgSpec(args=['self', 'threshold'
paddle.fluid.contrib.MagnitudePruner.prune (ArgSpec(args=['self', 'param', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.MagnitudePruner.prune (ArgSpec(args=['self', 'param', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.RatioPruner.__init__ (ArgSpec(args=['self', 'ratios'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e7a81a325b296a9ca502ee5adb4fc85d'))
paddle.fluid.contrib.RatioPruner.__init__ (ArgSpec(args=['self', 'ratios'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e7a81a325b296a9ca502ee5adb4fc85d'))
paddle.fluid.contrib.RatioPruner.prune (ArgSpec(args=['self', 'param', 'ratio'], varargs=None, keywords=None, defaults=(None,)), ('document', '358cbf2978c91028fb96a195a9884645'))
paddle.fluid.contrib.RatioPruner.prune (ArgSpec(args=['self', 'param', 'ratio'], varargs=None, keywords=None, defaults=(None,)), ('document', '358cbf2978c91028fb96a195a9884645'))
paddle.fluid.contrib.load_persistables_for_increment (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None), ('document', '
11fbf7e8dd2289805de291b453a33ee
7'))
paddle.fluid.contrib.load_persistables_for_increment (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None), ('document', '
2ab36d4f7a564f5f65e455807ad06c6
7'))
paddle.fluid.contrib.load_persistables_for_inference (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None), ('document', '5
b5577bb3d24070da819674255d16196
'))
paddle.fluid.contrib.load_persistables_for_inference (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None), ('document', '5
9066bac9db0ac6ce414d05780b7333f
'))
paddle.fluid.contrib.convert_dist_to_sparse_program (ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None), ('document', '
4efbd93876832d4d35497cdbc7a1e6d8
'))
paddle.fluid.contrib.convert_dist_to_sparse_program (ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None), ('document', '
74c39c595dc70d6be2f16d8e462d282b
'))
paddle.fluid.contrib.HDFSClient.__init__ (ArgSpec(args=['self', 'hadoop_home', 'configs'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.HDFSClient.__init__ (ArgSpec(args=['self', 'hadoop_home', 'configs'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.HDFSClient.delete (ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=None), ('document', 'c3721aa2d4d9ef5a857dd47b2681c03e'))
paddle.fluid.contrib.HDFSClient.delete (ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=None), ('document', 'c3721aa2d4d9ef5a857dd47b2681c03e'))
paddle.fluid.contrib.HDFSClient.download (ArgSpec(args=['self', 'hdfs_path', 'local_path', 'overwrite', 'unzip'], varargs=None, keywords=None, defaults=(False, False)), ('document', 'ca55bde92184d3fd0f9f5c963b25e634'))
paddle.fluid.contrib.HDFSClient.download (ArgSpec(args=['self', 'hdfs_path', 'local_path', 'overwrite', 'unzip'], varargs=None, keywords=None, defaults=(False, False)), ('document', 'ca55bde92184d3fd0f9f5c963b25e634'))
...
...
python/paddle/fluid/contrib/utils/lookup_table_utils.py
浏览文件 @
10ececb2
...
@@ -18,6 +18,7 @@ import os
...
@@ -18,6 +18,7 @@ import os
import
time
import
time
import
logging
import
logging
import
paddle
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid
import
io
from
paddle.fluid
import
io
from
paddle.fluid
import
Program
from
paddle.fluid
import
Program
...
@@ -84,8 +85,9 @@ def convert_dist_to_sparse_program(program):
...
@@ -84,8 +85,9 @@ def convert_dist_to_sparse_program(program):
when we train model with distributed lookup table but want to do the local inference, we can use
when we train model with distributed lookup table but want to do the local inference, we can use
this function to convert the train program with distributed lookup table to sparse lookup table.
this function to convert the train program with distributed lookup table to sparse lookup table.
:param program(Program): the program must be the trainer program, which will be get by the distribute transpiler.
Args:
:return:
program(Program): the program must be the trainer program, which will be get by the distribute transpiler.
Returns:
program: The `program` is a Program, it's the program replace distributed lookup table to sparse lookup table.
program: The `program` is a Program, it's the program replace distributed lookup table to sparse lookup table.
"""
"""
if
not
program
.
_distributed_lookup_table
:
if
not
program
.
_distributed_lookup_table
:
...
@@ -128,68 +130,92 @@ def convert_dist_to_sparse_program(program):
...
@@ -128,68 +130,92 @@ def convert_dist_to_sparse_program(program):
return
program
return
program
def
_load_persistable_vars
(
executor
,
dirname
,
program
,
lookup_table_vars
):
def
load_persistables_for_increment
(
dirname
,
executor
,
program
,
def
_is_checkpoint_var
(
exclude_fluid_vars
=
None
):
lookup_table_var
,
lookup_table_var_path
):
"""
"""
the checkpoint will not save or load all the variables.
WARNING: this function will only be used for distributed training with distributed lookup table.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
for increment trainning, the pserver will not only load dense variables,
but also load the suitable lookup table var. Because of sliced lookup table
: param var(Variable)
var with HASH, we must load the correct sliced var.
Args:
dirname(str): The directory path
executor(Executor): The executor to run for loading inference model.
program(Program): The parameter server program, which will run on Pserver.
lookup_table_var: the distributed lookup tables var name.
lookup_table_var_path: the the distributed lookup tables var location.
Returns:
None
"""
"""
if
exclude_fluid_vars
is
None
:
def
_load_persistable_vars
(
executor
,
dirname
,
need_load_vars
):
exclude_fluid_vars
=
[]
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
def
is_valid
(
var
):
need_delete_vars
=
[]
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
if
"tmp_"
in
var
.
name
:
return
False
if
var
.
name
in
exclude_fluid_vars
:
return
False
return
var
.
persistable
for
param
in
need_load_vars
:
origin_var
=
param
.
origin
slice_var
=
param
.
slice
is_slice
=
param
.
is_slice
offset
=
param
.
offset
if
is_slice
:
origin
=
load_block
.
create_var
(
name
=
"{}.load"
.
format
(
origin_var
.
name
),
type
=
origin_var
.
type
,
shape
=
origin_var
.
shape
,
dtype
=
origin_var
.
dtype
,
persistable
=
True
)
return
is_valid
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
origin
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
origin_var
.
name
)
})
io
.
load_vars
(
slice
=
load_block
.
create_var
(
executor
,
name
=
slice_var
.
name
,
dirname
=
dirnam
e
,
type
=
slice_var
.
typ
e
,
main_program
=
program
,
shape
=
slice_var
.
shape
,
predicate
=
_is_checkpoint_var
(
lookup_table_vars
)
,
dtype
=
slice_var
.
dtype
,
filename
=
Non
e
)
persistable
=
Tru
e
)
dim1_flatten
=
reduce
(
lambda
x
,
y
:
x
*
y
,
slice
.
shape
[
1
:])
start
=
int
(
offset
/
dim1_flatten
)
end
=
int
(
offset
/
dim1_flatten
+
slice
.
shape
[
0
])
def
load_persistables_for_increment
(
dirname
,
executor
,
program
,
load_block
.
append_op
(
lookup_table_var
,
lookup_table_var_path
):
type
=
"slice"
,
"""
inputs
=
{
'Input'
:
origin
},
WARNING: this function will only be used for distributed training with distributed lookup table.
outputs
=
{
'Out'
:
slice
},
for increment trainning, the pserver will not only load dense variables,
attrs
=
{
'axes'
:
[
0
],
but also load the suitable lookup table var. Because of slice lookup table
'starts'
:
[
start
],
var with HASH, we must load the correct slice var.
'ends'
:
[
end
]})
need_delete_vars
.
append
(
origin
)
else
:
origin
=
load_block
.
create_var
(
name
=
"{}"
.
format
(
origin_var
.
name
),
type
=
origin_var
.
type
,
shape
=
origin_var
.
shape
,
dtype
=
origin_var
.
dtype
,
persistable
=
True
)
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
origin
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
origin_var
.
name
)
})
load_block
.
append_op
(
type
=
'delete_var'
,
inputs
=
{
'X'
:
need_delete_vars
},
)
:param dirname(str): The directory path
executor
.
run
(
load_prog
)
:param executor(Executor): The executor to run for loading inference model.
:param program(Program): The parameter server program, which will run on Pserver.
:param lookup_table_var: the distributed lookup tables var name.
:param lookup_table_var_path: the the distributed lookup tables var location.
:return: None
"""
def
__load_lookup_table_vars
(
executor
,
main_program
,
lookup_table_var
,
def
__load_lookup_table_vars
(
executor
,
main_program
,
lookup_table_var
,
lookup_table_var_path
):
lookup_table_var_path
):
...
@@ -217,7 +243,9 @@ def load_persistables_for_increment(dirname, executor, program,
...
@@ -217,7 +243,9 @@ def load_persistables_for_increment(dirname, executor, program,
"Distributed Lookup Table Vars from {}, time = {}"
.
format
(
"Distributed Lookup Table Vars from {}, time = {}"
.
format
(
dirname
,
time
.
ctime
()))
dirname
,
time
.
ctime
()))
_load_persistable_vars
(
executor
,
dirname
,
program
,
[
lookup_table_var
])
need_load_vars
=
program
.
_parameters_on_pservers
.
get_distributed_vars_by_ep
(
program
.
_ps_endpoint
)
_load_persistable_vars
(
executor
,
dirname
,
need_load_vars
)
__load_lookup_table_vars
(
executor
,
program
,
lookup_table_var
,
__load_lookup_table_vars
(
executor
,
program
,
lookup_table_var
,
lookup_table_var_path
)
lookup_table_var_path
)
...
@@ -233,14 +261,61 @@ def load_persistables_for_inference(dirname, executor, program,
...
@@ -233,14 +261,61 @@ def load_persistables_for_inference(dirname, executor, program,
Inference with distributed lookup table is a little funky, this function will load distributed
Inference with distributed lookup table is a little funky, this function will load distributed
lookup table vars into sparse var, can be used in local inference mode.
lookup table vars into sparse var, can be used in local inference mode.
:param dirname(str): The directory path
Args:
:param executor(Executor): The executor to run for loading inference model.
dirname(str): The directory path
:param program(Program): The parameter server program, which will run on Pserver.
executor(Executor): The executor to run for loading inference model.
:param lookup_table_var_name: the distributed lookup tables var name.
program(Program): The parameter server program, which will run on Pserver.
:return: None
lookup_table_var_name: the distributed lookup tables var name.
Returns:
None
"""
def
_load_persistable_vars
(
executor
,
dirname
,
program
,
lookup_table_vars
):
def
_is_checkpoint_var
(
exclude_fluid_vars
=
None
):
"""
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
def
__load_lookup_table_vars
(
executor
,
dirname
,
main_program
,
: param var(Variable)
"""
if
exclude_fluid_vars
is
None
:
exclude_fluid_vars
=
[]
def
is_valid
(
var
):
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
if
"tmp_"
in
var
.
name
:
return
False
if
var
.
name
in
exclude_fluid_vars
:
return
False
return
var
.
persistable
return
is_valid
io
.
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
(
lookup_table_vars
),
filename
=
None
)
def
_load_lookup_table_vars
(
executor
,
dirname
,
main_program
,
lookup_table_vars
):
lookup_table_vars
):
if
not
os
.
path
.
isdir
(
dirname
):
if
not
os
.
path
.
isdir
(
dirname
):
raise
ValueError
(
"There is no directory named '%s'"
,
dirname
)
raise
ValueError
(
"There is no directory named '%s'"
,
dirname
)
...
@@ -313,11 +388,96 @@ def load_persistables_for_inference(dirname, executor, program,
...
@@ -313,11 +388,96 @@ def load_persistables_for_inference(dirname, executor, program,
dirname
,
time
.
ctime
()))
dirname
,
time
.
ctime
()))
_load_persistable_vars
(
executor
,
dirname
,
program
,
[
lookup_table_var_name
])
_load_persistable_vars
(
executor
,
dirname
,
program
,
[
lookup_table_var_name
])
__load_lookup_table_vars
(
executor
,
dirname
,
program
,
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
[
lookup_table_var_name
])
[
lookup_table_var_name
])
_logger
.
info
(
"Finish Load Sparse Program With "
_logger
.
info
(
"Finish Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}"
.
format
(
"Distributed Lookup Table Vars from {}, time = {}"
.
format
(
dirname
,
time
.
ctime
()))
dirname
,
time
.
ctime
()))
return
program
return
program
def
get_inference_model
(
main_program
,
feeded_var_names
,
target_vars
):
"""
Prune the given `main_program` to build a new program especially for inference with distributed lookup table ,
and then add `feeded_vars` and `target_vars` in this program.
Args:
main_program(Program|None): The original program, which will be pruned to
build the inference model. If is setted None,
the default main program will be used.
Default: None.
feeded_var_names(list[str]): Names of variables that need to be feeded data
during inference.
target_vars(list[Variable]): Variables from which we can get inference
results.
Returns:
program(Program)
Raises:
ValueError: If `feed_var_names` is not a list of basestring.
ValueError: If `target_vars` is not a list of Variable.
"""
def
prepend_feed_ops
(
inference_program
,
feed_target_names
,
feed_holder_name
=
'feed'
):
if
len
(
feed_target_names
)
==
0
:
return
global_block
=
inference_program
.
global_block
()
feed_var
=
global_block
.
create_var
(
name
=
feed_holder_name
,
type
=
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
,
persistable
=
True
)
for
i
,
name
in
enumerate
(
feed_target_names
):
out
=
global_block
.
var
(
name
)
global_block
.
_prepend_op
(
type
=
'feed'
,
inputs
=
{
'X'
:
[
feed_var
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'col'
:
i
})
def
append_fetch_ops
(
inference_program
,
fetch_target_names
,
fetch_holder_name
=
'fetch'
):
global_block
=
inference_program
.
global_block
()
fetch_var
=
global_block
.
create_var
(
name
=
fetch_holder_name
,
type
=
core
.
VarDesc
.
VarType
.
FETCH_LIST
,
persistable
=
True
)
for
i
,
name
in
enumerate
(
fetch_target_names
):
global_block
.
append_op
(
type
=
'fetch'
,
inputs
=
{
'X'
:
[
name
]},
outputs
=
{
'Out'
:
[
fetch_var
]},
attrs
=
{
'col'
:
i
})
origin_program
=
main_program
.
clone
()
main_program
=
main_program
.
clone
()
global_block
=
main_program
.
global_block
()
need_to_remove_op_index
=
[]
for
i
,
op
in
enumerate
(
global_block
.
ops
):
op
.
desc
.
set_is_target
(
False
)
if
op
.
type
==
"feed"
or
op
.
type
==
"fetch"
:
need_to_remove_op_index
.
append
(
i
)
for
index
in
need_to_remove_op_index
[::
-
1
]:
global_block
.
_remove_op
(
index
)
main_program
.
desc
.
flush
()
main_program
=
main_program
.
_prune
(
targets
=
target_vars
)
main_program
=
main_program
.
_inference_optimize
(
prune_read_op
=
True
)
fetch_var_names
=
[
v
.
name
for
v
in
target_vars
]
prepend_feed_ops
(
main_program
,
feeded_var_names
)
append_fetch_ops
(
main_program
,
fetch_var_names
)
return
main_program
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录