Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
10a13f9c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
10a13f9c
编写于
9月 28, 2018
作者:
X
Xin Pan
提交者:
GitHub
9月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13319 from qingqing01/quantize_transpiler_update
Fixed-point quantize transpiler.
上级
643b6faa
f189bf6a
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
870 addition
and
2 deletion
+870
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-0
python/CMakeLists.txt
python/CMakeLists.txt
+1
-0
python/paddle/fluid/contrib/__init__.py
python/paddle/fluid/contrib/__init__.py
+3
-0
python/paddle/fluid/contrib/quantize/__init__.py
python/paddle/fluid/contrib/quantize/__init__.py
+20
-0
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
+557
-0
python/paddle/fluid/contrib/tests/CMakeLists.txt
python/paddle/fluid/contrib/tests/CMakeLists.txt
+6
-0
python/paddle/fluid/contrib/tests/test_quantize_transpiler.py
...on/paddle/fluid/contrib/tests/test_quantize_transpiler.py
+272
-0
python/paddle/fluid/transpiler/__init__.py
python/paddle/fluid/transpiler/__init__.py
+6
-2
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
10a13f9c
...
...
@@ -299,6 +299,10 @@ paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init',
paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array', 'value'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.op_freq_statistic ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_bits', 'activation_bits', 'activation_quantize_type', 'weight_quantize_type', 'window_size'], varargs=None, keywords=None, defaults=(8, 8, 'abs_max', 'abs_max', 10000))
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
...
...
python/CMakeLists.txt
浏览文件 @
10a13f9c
...
...
@@ -87,6 +87,7 @@ if (WITH_TESTING)
endif
()
endif
()
add_subdirectory
(
paddle/fluid/tests
)
add_subdirectory
(
paddle/fluid/contrib/tests
)
endif
()
install
(
DIRECTORY
${
PADDLE_PYTHON_PACKAGE_DIR
}
DESTINATION opt/paddle/share/wheels
...
...
python/paddle/fluid/contrib/__init__.py
浏览文件 @
10a13f9c
...
...
@@ -20,8 +20,11 @@ from . import memory_usage_calc
from
.memory_usage_calc
import
*
from
.
import
op_frequence
from
.op_frequence
import
*
from
.
import
quantize
from
.quantize
import
*
__all__
=
[]
__all__
+=
decoder
.
__all__
__all__
+=
memory_usage_calc
.
__all__
__all__
+=
op_frequence
.
__all__
__all__
+=
quantize
.
__all__
python/paddle/fluid/contrib/quantize/__init__.py
0 → 100644
浏览文件 @
10a13f9c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
.
import
quantize_transpiler
from
.quantize_transpiler
import
*
__all__
=
quantize_transpiler
.
__all__
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
0 → 100644
浏览文件 @
10a13f9c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
collections
import
numpy
as
np
from
paddle.fluid.framework
import
default_main_program
,
default_startup_program
,
program_guard
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid
import
unique_name
from
paddle.fluid
import
core
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.nn
import
autoincreased_step_counter
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.transpiler.inference_transpiler
import
InferenceTranspiler
__all__
=
[
'QuantizeTranspiler'
]
_QUANTIZABLE_OP_TYPES
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
def
_quantized_var_name
(
var_name
):
"""
Return quantized variable name for the input `var_name`.
"""
return
"%s.quantized"
%
(
var_name
)
def
_dequantized_var_name
(
var_name
):
"""
Return dequantized variable name for the input `var_name`.
"""
return
"%s.dequantized"
%
(
var_name
)
def
_quantized_scale_name
(
var_name
):
"""
Return quantized variable name for the input `var_name`.
"""
return
"%s.scale"
%
(
var_name
)
def
_original_var_name
(
var_name
):
"""
Return the original variable name.
"""
if
var_name
.
endswith
(
'.quantized.dequantized'
):
return
var_name
[:
-
len
(
'.quantized.dequantized'
)]
if
var_name
.
endswith
(
'.quantized'
):
return
var_name
[:
-
len
(
'.quantized'
)]
if
var_name
.
endswith
(
'.dequantized'
):
return
var_name
[:
-
len
(
'.dequantized'
)]
if
var_name
.
endswith
(
'.scale'
):
return
var_name
[:
-
len
(
'.scale'
)]
else
:
return
var_name
def
_is_float
(
v
):
return
isinstance
(
v
,
float
)
or
isinstance
(
v
,
np
.
float32
)
def
quant
(
x
,
scale
,
num_bits
):
y
=
np
.
round
(
x
/
scale
*
((
1
<<
(
num_bits
-
1
))
-
1
))
return
y
class
QuantizeTranspiler
(
object
):
def
__init__
(
self
,
weight_bits
=
8
,
activation_bits
=
8
,
activation_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
window_size
=
10000
):
"""
Convert and rewrite the fluid Program according to weight and
activation quantization type.
Args:
weight_bits (int): quantization bit number for weights,
the bias is not quantized.
activation_bits (int): quantization bit number for activation.
activation_quantize_type (str): quantization type for activation,
now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
the quantization scale will be calculated dynamically each step
in both training and testing period. If use 'range_abs_max',
a static quantization scale will be calculated during training
and used in inference.
weight_quantize_type (str): quantization type for weights,
support 'abs_max'. The 'range_abs_max' usually is not used for
weight, since weights are fixed once the model is well trained.
window_size (int): the window size for 'range_abs_max' quantization.
Examples:
.. code-block:: python
# the original program will be rewrite, if you don't want to
# change it, please clone at first.
# quantize_program = program.clone()
t = fluid.QuantizeTranspiler()
t.transpile(quantize_program)
"""
self
.
weight_bits
=
weight_bits
self
.
activation_bits
=
activation_bits
quant_type
=
[
'abs_max'
,
'range_abs_max'
]
if
weight_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown weight_quantize_type: '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
weight_quantize_type
))
if
activation_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown activation_quantize_type : '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
activation_quantize_type
))
self
.
weight_quantize_type
=
weight_quantize_type
self
.
activation_quantize_type
=
activation_quantize_type
self
.
window_size
=
window_size
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
)
self
.
fake_quant_op_types
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
]
self
.
fake_dequant_op_types
=
[
'fake_dequantize_max_abs'
]
self
.
is_test
=
None
self
.
global_step
=
None
def
training_transpile
(
self
,
program
=
None
,
startup_program
=
None
):
"""Rewrites a training input program in place for simulated
quantization. Insert fake quantization and de-quantization ops into
program to simulate the error introduced by quantization. And change
the graident ops' input by using the faked quantization weights and
activation. Since the program is transformed in place, the graph
connection will change.
Args:
program (Program): the input program to be transpile.
"""
self
.
is_test
=
False
program
=
default_main_program
()
if
program
is
None
else
program
startup_program
=
default_startup_program
()
if
startup_program
is
\
None
else
startup_program
# marked the variable which has been quantized and dequantized.
dequanted_vars
=
[
collections
.
OrderedDict
()
for
_
in
range
(
len
(
program
.
blocks
))
]
grad_op_types
=
[
'%s_grad'
%
(
type
)
for
type
in
_QUANTIZABLE_OP_TYPES
]
params
=
[
p
.
name
for
p
in
program
.
global_block
().
iter_parameters
()]
def
_transpile_forward
(
block
,
op
):
idx
=
block
.
ops
.
index
(
op
)
block_id
=
block
.
idx
# insert quant op and dequant op
for
name
in
op
.
input_arg_names
:
if
name
in
dequanted_vars
[
block_id
]:
dequant_var
=
dequanted_vars
[
block_id
][
name
]
else
:
var
=
block
.
var
(
name
)
quant_bits
=
self
.
weight_bits
if
var
.
name
in
params
\
else
self
.
activation_bits
quant_type
=
self
.
weight_quantize_type
if
var
.
name
\
in
params
else
self
.
activation_quantize_type
quant_var
,
scale_var
=
self
.
_insert_quant_op
(
block
,
idx
,
var
,
quant_bits
,
quant_type
)
dequant_var
=
self
.
_insert_dequant_op
(
block
,
idx
+
1
,
quant_var
,
scale_var
,
quant_bits
)
dequanted_vars
[
block_id
][
name
]
=
dequant_var
# rename the forward op inputs
op
.
_rename_input
(
name
,
dequant_var
.
name
)
def
_transpile_backward
(
block
,
op
):
block_id
=
block
.
idx
no_dequanted_input_vars
=
True
for
name
in
op
.
input_arg_names
:
if
name
in
dequanted_vars
[
block_id
]:
dequant_var
=
dequanted_vars
[
block_id
][
name
]
op
.
_rename_input
(
name
,
dequant_var
.
name
)
no_dequanted_input_vars
=
False
if
no_dequanted_input_vars
:
raise
ValueError
(
"There is no dequanted inputs for op %s."
%
(
op
.
type
))
with
program_guard
(
program
,
startup_program
):
self
.
_create_global_step
()
for
block
in
program
.
blocks
:
ops
=
list
(
block
.
ops
)
block_id
=
block
.
idx
for
op
in
ops
:
# rewrite the forward ProgramDes
if
op
.
type
in
_QUANTIZABLE_OP_TYPES
:
_transpile_forward
(
block
,
op
)
# rename the backward op inputs
if
op
.
type
in
grad_op_types
:
_transpile_backward
(
block
,
op
)
def
_create_global_step
(
self
):
if
self
.
weight_quantize_type
==
'range_abs_max'
or
\
self
.
activation_quantize_type
==
'range_abs_max'
:
self
.
global_step
=
autoincreased_step_counter
()
def
freeze_program
(
self
,
program
,
place
,
fuse_bn
=
False
,
scope
=
None
):
"""Freeze input training program for inference.
Args:
program (Program): the input program to be transpile.
"""
self
.
is_test
=
True
scope
=
global_scope
()
if
scope
is
None
else
scope
program
=
default_main_program
()
if
program
is
None
else
program
if
fuse_bn
:
bn_fuse_transpiler
=
BNFuseTranspiler
()
bn_fuse_transpiler
.
transpile
(
program
,
place
)
persistable_vars
=
[
v
.
name
for
v
in
filter
(
lambda
var
:
var
.
persistable
,
program
.
list_vars
())
]
op_in_rename_map
=
[
collections
.
OrderedDict
()
for
_
in
range
(
len
(
program
.
blocks
))
]
op_out_rename_map
=
[
collections
.
OrderedDict
()
for
_
in
range
(
len
(
program
.
blocks
))
]
var_scale_map
=
[
collections
.
OrderedDict
()
for
_
in
range
(
len
(
program
.
blocks
))
]
def
_remove_fake_quant_and_dequant_op
(
block
,
op
):
idx
=
block
.
ops
.
index
(
op
)
block_id
=
block
.
idx
k
=
op
.
output
(
'Out'
)[
0
]
v
=
op
.
input
(
'X'
)[
0
]
if
v
not
in
op_in_rename_map
[
block_id
]:
op_in_rename_map
[
block_id
][
k
]
=
v
else
:
op_in_rename_map
[
block_id
][
k
]
=
op_in_rename_map
[
block_id
][
v
]
block
.
_remove_op
(
idx
)
def
_insert_post_dequant_op
(
block
,
op
):
idx
=
block
.
ops
.
index
(
op
)
block_id
=
block
.
idx
max_range
=
None
scale_var
=
None
for
name
in
op
.
input_arg_names
:
if
name
in
op_in_rename_map
[
block_id
]:
op
.
_rename_input
(
name
,
op_in_rename_map
[
block_id
][
name
])
scale_v
=
var_scale_map
[
block_id
][
_original_var_name
(
name
)]
if
_original_var_name
(
name
)
in
persistable_vars
:
param_range
=
(
1
<<
(
self
.
weight_bits
-
1
))
-
1
act_range
=
(
1
<<
(
self
.
activation_bits
-
1
))
-
1
assert
_is_float
(
scale_v
)
max_range
=
param_range
*
act_range
/
scale_v
else
:
assert
isinstance
(
scale_v
,
Variable
)
scale_var
=
var_scale_map
[
block_id
][
_original_var_name
(
name
)]
if
len
(
op
.
output_arg_names
)
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
" more than one output."
%
(
op
.
type
))
out_var
=
block
.
var
(
op
.
output_arg_names
[
0
])
dequant_var
=
block
.
create_var
(
name
=
_dequantized_var_name
(
out_var
.
name
),
type
=
out_var
.
type
,
shape
=
out_var
.
shape
,
dtype
=
out_var
.
dtype
)
# insert fake_dequantize_op
dequant_op
=
block
.
_insert_op
(
idx
+
1
,
type
=
"fake_dequantize_max_abs"
,
attrs
=
{
'max_range'
:
float
(
max_range
)},
inputs
=
{
"X"
:
out_var
,
'Scale'
:
scale_var
},
outputs
=
{
"Out"
:
dequant_var
})
op_out_rename_map
[
block_id
][
out_var
.
name
]
=
dequant_var
.
name
return
dequant_var
def
_load_var
(
name
):
return
np
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
def
_restore_var
(
name
,
arr
):
t
=
scope
.
find_var
(
name
).
get_tensor
()
t
.
set
(
arr
,
place
)
for
block
in
program
.
blocks
:
ops
=
list
(
block
.
ops
)
block_id
=
block
.
idx
for
op
in
ops
:
op_type
=
op
.
type
# insert dequant_op after fc/conv, need to rename
# input of the followed ops
for
name
in
op
.
input_arg_names
:
if
name
in
op_out_rename_map
[
block_id
]:
op
.
_rename_input
(
name
,
op_out_rename_map
[
block_id
][
name
])
if
op_type
in
self
.
fake_quant_op_types
:
in_arg_name
=
op
.
input
(
'X'
)[
0
]
if
in_arg_name
in
persistable_vars
:
if
self
.
weight_quantize_type
==
'abs_max'
:
param
=
_load_var
(
in_arg_name
)
scale_v
=
np
.
max
(
np
.
abs
(
param
))
else
:
scale_v
=
_load_var
(
op
.
output
(
'OutScale'
)[
0
])
var_scale_map
[
block_id
][
in_arg_name
]
=
scale_v
else
:
scale_v
=
block
.
var
(
op
.
output
(
'OutScale'
)[
0
])
var_scale_map
[
block_id
][
in_arg_name
]
=
scale_v
if
in_arg_name
in
persistable_vars
:
_remove_fake_quant_and_dequant_op
(
block
,
op
)
# quantize weight and restore
param_t
=
_load_var
(
in_arg_name
)
param_q_t
=
quant
(
param_t
,
scale_v
,
self
.
weight_bits
)
_restore_var
(
in_arg_name
,
param_q_t
)
if
op_type
in
self
.
fake_dequant_op_types
:
_remove_fake_quant_and_dequant_op
(
block
,
op
)
if
op_type
in
_QUANTIZABLE_OP_TYPES
:
dequant_var
=
_insert_post_dequant_op
(
block
,
op
)
# remove the unused var in ProgramDesc
self
.
_remove_unused_var
(
program
)
#program = program.clone()
def
convert_to_int8
(
self
,
program
,
place
,
scope
=
None
):
scope
=
global_scope
()
if
scope
is
None
else
scope
program
=
default_main_program
()
if
program
is
None
else
program
def
_load_var
(
name
):
return
np
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
global_block
=
program
.
global_block
()
def
convert_to_int8
(
var
):
int8_var_name
=
var
.
name
+
".int8"
int8_var
=
global_block
.
create_parameter
(
name
=
int8_var_name
.
encode
(
'ascii'
),
type
=
var
.
type
,
dtype
=
core
.
VarDesc
.
VarType
.
INT8
,
shape
=
var
.
shape
)
tensor
=
_load_var
(
var
.
name
)
scope
.
var
(
int8_var_name
)
int8_tensor
=
scope
.
find_var
(
int8_var_name
).
get_tensor
()
int8_tensor
.
set
(
tensor
.
astype
(
np
.
int8
),
place
)
return
int8_var
input_map
=
{}
for
block
in
program
.
blocks
:
for
op
in
list
(
block
.
ops
):
if
op
.
type
in
_QUANTIZABLE_OP_TYPES
:
for
name
in
op
.
input_arg_names
:
var
=
block
.
var
(
name
)
if
var
.
persistable
:
if
name
not
in
input_map
:
int8_var
=
convert_to_int8
(
var
)
input_map
[
name
]
=
int8_var
.
name
op
.
_rename_input
(
name
,
input_map
[
name
])
self
.
_remove_unused_var
(
program
)
def
_remove_unused_var
(
self
,
program
):
all_remove_vars
=
[]
for
block
in
program
.
blocks
:
args
=
[]
for
op
in
block
.
ops
:
args
+=
op
.
input_arg_names
args
+=
op
.
output_arg_names
args
=
list
(
set
(
args
))
var_names
=
block
.
vars
.
keys
()
sub_block_remove_vars
=
[]
for
var
in
var_names
:
if
var
not
in
args
:
sub_block_remove_vars
.
append
(
var
)
all_remove_vars
.
append
(
sub_block_remove_vars
)
remove_vars
=
[
list
(
set
(
v
))
for
v
in
all_remove_vars
]
for
i
,
block
in
enumerate
(
program
.
blocks
):
for
v
in
remove_vars
[
i
]:
block
.
_remove_var
(
v
)
def
_insert_quant_abs_max_op
(
self
,
block
,
idx
,
var
,
quant_bits
):
"""Insert fake_quantize_abs_max op.
"""
quant_var
=
block
.
create_var
(
name
=
_quantized_var_name
(
var
.
name
),
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
scale
=
block
.
create_var
(
name
=
_quantized_scale_name
(
var
.
name
),
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
quant_op
=
block
.
_insert_op
(
idx
,
type
=
'fake_quantize_abs_max'
,
attrs
=
{
'bit_length'
:
quant_bits
},
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
quant_var
,
'OutScale'
:
scale
})
return
quant_var
,
scale
def
_insert_quant_range_abs_max_op
(
self
,
block
,
idx
,
var
,
quant_bits
):
"""Insert fake_quantize_range_abs_max
"""
quant_var
=
block
.
create_var
(
name
=
_quantized_var_name
(
var
.
name
),
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
scale
=
self
.
helper
.
create_parameter
(
attr
=
ParamAttr
(
name
=
_quantized_scale_name
(
var
.
name
),
initializer
=
Constant
(
0.001
),
trainable
=
False
),
shape
=
[
1
],
dtype
=
var
.
dtype
)
scale
.
stop_gradient
=
True
ins
=
{
'X'
:
var
,
'InScale'
:
scale
}
outs
=
{
'Out'
:
quant_var
,
'OutScale'
:
scale
}
if
not
self
.
is_test
:
# A global step counter variable with type int64
scales
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
'scales'
),
persistable
=
True
,
dtype
=
var
.
dtype
,
shape
=
[
self
.
window_size
])
self
.
helper
.
set_variable_initializer
(
scales
,
initializer
=
Constant
(
value
=
0
))
ins
[
'Iter'
]
=
self
.
global_step
outs
[
'OutScales'
]
=
scales
attrs
=
{
'window_size'
:
self
.
window_size
,
'bit_length'
:
quant_bits
,
'is_test'
:
self
.
is_test
}
quant_op
=
block
.
_insert_op
(
idx
,
type
=
'fake_quantize_range_abs_max'
,
attrs
=
attrs
,
inputs
=
ins
,
outputs
=
outs
)
return
quant_var
,
scale
def
_insert_quant_op
(
self
,
block
,
idx
,
var
,
quant_bits
,
quant_type
):
"""
Insert fake_quantize_op
"""
if
quant_type
==
'abs_max'
:
return
self
.
_insert_quant_abs_max_op
(
block
,
idx
,
var
,
quant_bits
)
elif
quant_type
==
'range_abs_max'
:
return
self
.
_insert_quant_range_abs_max_op
(
block
,
idx
,
var
,
quant_bits
)
def
_insert_dequant_op
(
self
,
block
,
idx
,
var
,
scale
,
quant_bits
):
"""
Insert fake_quantize_op
"""
dequant_var
=
block
.
create_var
(
name
=
_dequantized_var_name
(
var
.
name
),
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
# insert fake_dequantize_op
max_range
=
(
1
<<
(
quant_bits
-
1
))
-
1
dequant_op
=
block
.
_insert_op
(
idx
,
type
=
"fake_dequantize_max_abs"
,
attrs
=
{
'max_range'
:
float
(
max_range
)},
inputs
=
{
"X"
:
var
,
'Scale'
:
scale
},
outputs
=
{
"Out"
:
dequant_var
})
return
dequant_var
class
BNFuseTranspiler
(
InferenceTranspiler
):
def
_fuse_param
(
self
,
current_op
,
bn_op
,
bias_op
,
with_bias
):
def
_update_param
(
op
,
param_name
,
new_param
):
var
=
self
.
block
.
vars
[
param_name
]
tensor
=
self
.
scope
.
find_var
(
param_name
).
get_tensor
()
tensor
.
set
(
np
.
array
(
new_param
),
self
.
place
)
def
_load_param
(
param_name
):
return
np
.
array
(
self
.
scope
.
find_var
(
param_name
).
get_tensor
())
bias_bn
=
_load_param
(
bn_op
.
input
(
"Bias"
)[
0
])
#Bias
scale_bn
=
_load_param
(
bn_op
.
input
(
"Scale"
)[
0
])
#Scale
mean_bn
=
_load_param
(
bn_op
.
input
(
"Mean"
)[
0
])
#Mean
var_bn
=
_load_param
(
bn_op
.
input
(
"Variance"
)[
0
])
#Variance
if
current_op
.
type
in
[
'conv2d'
,
'depthwise_conv2d'
]:
current_param
=
_load_param
(
_original_var_name
(
current_op
.
input
(
"Filter"
)[
0
]))
elif
current_op
.
type
==
'mul'
:
current_param
=
_load_param
(
_original_var_name
(
current_op
.
input
(
"Y"
)[
0
]))
std_bn
=
np
.
float32
(
np
.
sqrt
(
np
.
add
(
var_bn
,
1e-5
)))
tmp
=
np
.
float32
(
np
.
divide
(
scale_bn
,
std_bn
))
# add bias of batch_norm_op to conv2d
if
with_bias
:
bias
=
_load_param
(
bias_op
.
input
(
"Y"
))
else
:
bias
=
np
.
zeros
(
bias_bn
.
shape
)
bias
=
np
.
float32
(
np
.
add
(
np
.
multiply
(
np
.
subtract
(
bias
,
mean_bn
),
tmp
),
bias_bn
))
# re-compute weight of conv2d/fc
tmp
=
tmp
.
reshape
(
tmp
.
shape
[
0
],
-
1
)
dst_param
=
current_param
.
reshape
((
tmp
.
shape
[
0
],
-
1
))
dst_param
=
np
.
float32
(
np
.
multiply
(
dst_param
,
tmp
))
dst_param
=
dst_param
.
reshape
(
current_param
.
shape
)
# update parameters
if
current_op
.
type
in
[
'conv2d'
,
'depthwise_conv2d'
]:
_update_param
(
current_op
,
_original_var_name
(
current_op
.
input
(
"Filter"
)[
0
]),
dst_param
)
elif
current_op
.
type
==
'mul'
:
_update_param
(
current_op
,
_original_var_name
(
current_op
.
input
(
"Y"
)[
0
]),
dst_param
)
_update_param
(
bias_op
,
bias_op
.
input
(
"Y"
)[
0
],
bias
)
# collect the renamed input
self
.
input_map
[
bn_op
.
output
(
"Y"
)[
0
]]
=
bias_op
.
output
(
"Out"
)[
0
]
python/paddle/fluid/contrib/tests/CMakeLists.txt
0 → 100644
浏览文件 @
10a13f9c
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/contrib/tests/test_quantize_transpiler.py
0 → 100644
浏览文件 @
10a13f9c
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
numpy
as
np
import
six
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.contrib.quantize.quantize_transpiler
import
_original_var_name
from
paddle.fluid.contrib.quantize.quantize_transpiler
import
QuantizeTranspiler
def
linear_fc
(
num
):
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
six
.
moves
.
xrange
(
num
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
128
,
act
=
'relu'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
hidden
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
residual_block
(
num
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
six
.
moves
.
xrange
(
num
):
conv
=
conv_bn_layer
(
hidden
,
16
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
16
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
conv_net
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
class
TestQuantizeTranspiler
(
unittest
.
TestCase
):
def
setUp
(
self
):
# since quant_op and dequant_op is not ready, use cos and sin for test
self
.
weight_quant_op_type
=
'fake_quantize_abs_max'
self
.
dequant_op_type
=
'fake_dequantize_max_abs'
self
.
quantizable_op_and_inputs
=
{
'conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
'mul'
:
[
'X'
,
'Y'
]
}
self
.
quantizable_op_grad_and_inputs
=
{
'conv2d_grad'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d_grad'
:
[
'Input'
,
'Filter'
],
'mul_grad'
:
[
'X'
,
'Y'
]
}
def
check_program
(
self
,
program
):
quantized_ops
=
{}
persistable_vars
=
[
v
.
name
for
v
in
filter
(
lambda
var
:
var
.
persistable
,
program
.
list_vars
())
]
for
block
in
program
.
blocks
:
for
idx
,
op
in
enumerate
(
block
.
ops
):
# check forward
if
op
.
type
in
self
.
quantizable_op_and_inputs
:
for
i
,
arg_name
in
enumerate
(
op
.
input_arg_names
):
quant_op_type
=
self
.
weight_quant_op_type
if
\
_original_var_name
(
arg_name
)
\
in
persistable_vars
else
self
.
act_quant_op_type
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
if
arg_name
not
in
quantized_ops
:
self
.
assertEqual
(
block
.
ops
[
idx
-
2
*
i
-
1
].
type
,
self
.
dequant_op_type
)
self
.
assertEqual
(
block
.
ops
[
idx
-
2
*
i
-
2
].
type
,
quant_op_type
)
quantized_ops
[
arg_name
]
=
block
.
ops
[
idx
-
2
*
i
-
2
]
else
:
op_idx
=
block
.
ops
.
index
(
quantized_ops
[
arg_name
])
self
.
assertLess
(
op_idx
,
idx
)
# check backward
if
op
.
type
in
self
.
quantizable_op_grad_and_inputs
:
for
pname
in
self
.
quantizable_op_grad_and_inputs
[
op
.
type
]:
arg_name
=
op
.
input
(
pname
)[
0
]
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
linear_fc
(
3
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
t
=
QuantizeTranspiler
(
activation_quantize_type
=
quant_type
)
t
.
training_transpile
(
main
)
self
.
check_program
(
main
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
linear_fc_quant
(
'abs_max'
)
def
test_linear_fc_quant_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
linear_fc_quant
(
'range_abs_max'
)
def
residual_block_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
residual_block
(
2
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
t
=
QuantizeTranspiler
(
activation_quantize_type
=
quant_type
)
t
.
training_transpile
(
main
)
self
.
check_program
(
main
)
def
test_residual_block_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
residual_block_quant
(
'abs_max'
)
def
test_residual_block_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
residual_block_quant
(
'range_abs_max'
)
def
freeze_program
(
self
,
use_cuda
):
def
build_program
(
main
,
startup
,
is_test
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
conv_net
(
img
,
label
)
if
not
is_test
:
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
return
[
img
,
label
],
loss
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
feeds
,
loss
=
build_program
(
main
,
startup
,
False
)
build_program
(
test_program
,
startup
,
True
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
quant_transpiler
=
QuantizeTranspiler
()
quant_transpiler
.
training_transpile
(
main
)
quant_transpiler
.
training_transpile
(
test_program
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
iter
=
5
batch_size
=
8
class_num
=
10
exe
.
run
(
startup
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
with
fluid
.
program_guard
(
main
):
for
_
in
range
(
iter
):
data
=
next
(
train_reader
())
loss_v
=
exe
.
run
(
program
=
main
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
with
fluid
.
program_guard
(
test_program
):
test_data
=
next
(
test_reader
())
w_var
=
fluid
.
framework
.
_get_var
(
'conv2d_1.w_0.quantized'
,
test_program
)
# Testing during training
test_loss1
,
w_quant
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
,
w_var
])
# Freeze program for inference, but the weight of fc/conv is still float type.
quant_transpiler
.
freeze_program
(
test_program
,
place
)
test_loss2
,
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
])
self
.
assertAlmostEqual
(
test_loss1
,
test_loss2
,
delta
=
1e-3
)
w_freeze
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0'
)
.
get_tensor
())
self
.
assertEqual
(
np
.
sum
(
w_freeze
),
np
.
sum
(
w_quant
))
# Convert parameter to 8-bit.
quant_transpiler
.
convert_to_int8
(
test_program
,
place
)
# Save the 8-bit parameter and model file.
fluid
.
io
.
save_inference_model
(
'model_8bit'
,
[
'image'
,
'label'
],
[
loss
],
exe
,
test_program
)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[
infer
,
feed
,
fetch
]
=
fluid
.
io
.
load_inference_model
(
'model_8bit'
,
exe
)
# Check the loaded 8-bit weight.
w_8bit
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0.int8'
)
.
get_tensor
())
self
.
assertEqual
(
w_8bit
.
dtype
,
np
.
int8
)
self
.
assertEqual
(
np
.
sum
(
w_8bit
),
np
.
sum
(
w_freeze
))
def
test_freeze_program_cuda
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_program
(
True
)
def
test_freeze_program_cpu
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_program
(
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/__init__.py
浏览文件 @
10a13f9c
...
...
@@ -20,6 +20,10 @@ from .memory_optimization_transpiler import memory_optimize, release_memory
from
.ps_dispatcher
import
HashName
,
RoundRobin
__all__
=
[
"DistributeTranspiler"
,
"memory_optimize"
,
"release_memory"
,
"HashName"
,
"RoundRobin"
,
"DistributeTranspilerConfig"
"DistributeTranspiler"
,
"memory_optimize"
,
"release_memory"
,
"HashName"
,
"RoundRobin"
,
"DistributeTranspilerConfig"
,
]
python/setup.py.in
浏览文件 @
10a13f9c
...
...
@@ -106,6 +106,7 @@ packages=['paddle',
'paddle.fluid.layers',
'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize',
'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details']
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录