未验证 提交 101c8760 编写于 作者: W Wenyu 提交者: GitHub

add ppyoloe plus obj365 (#7564)

上级 3a16314e
metric: COCO
num_classes: 365
TrainDataset:
!COCODataSet
image_dir: train
anno_path: annotations/zhiyuan_objv2_train.json
dataset_dir: dataset/objects365
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
image_dir: val
anno_path: annotations/zhiyuan_objv2_val.json
dataset_dir: dataset/objects365
allow_empty: true
TestDataset:
!ImageFolder
anno_path: annotations/zhiyuan_objv2_val.json
dataset_dir: dataset/objects365/
...@@ -71,6 +71,18 @@ PP-YOLOE is composed of following methods: ...@@ -71,6 +71,18 @@ PP-YOLOE is composed of following methods:
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`. - If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
- End-to-end speed test includes pre-processing + inference + post-processing and NMS time, using **Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **single Tesla V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6**. - End-to-end speed test includes pre-processing + inference + post-processing and NMS time, using **Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **single Tesla V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6**.
### Model Zoo on Objects365
| Model | Epoch | Machine number | GPU number | images/GPU | backbone | input shape | Box AP<sup>0.5 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config |
|:---------------:|:-----:|:-----------:|:-----------:|:-----------:|:---------:|:----------:|:--------------:|:---------:|:---------:|:-------------:|:-----------------------:| :--------:|:--------:|
| PP-YOLOE+_s | 60 | 3 | 8 | 8 | cspresnet-s | 640 | 18.1 | 7.93 | 17.36 | 208.3 | 333.3 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_s_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_s_60e_objects365.yml) |
| PP-YOLOE+_m | 60 | 4 | 8 | 8 | cspresnet-m | 640 | 25.0 | 23.43 | 49.91 | 123.4 | 208.3 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_m_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_m_60e_objects365.yml) |
| PP-YOLOE+_l | 60 | 3 | 8 | 8 | cspresnet-l | 640 | 30.8 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_l_60e_objects365.yml) |
| PP-YOLOE+_x | 60 | 4 | 8 | 8 | cspresnet-x | 640 | 32.7 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_x_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_x_60e_objects365.yml) |
**Notes:**
- The Details for multiple machine and multi-gpu training, see [DistributedTraining](../../docs/tutorials/DistributedTraining_en.md)
### Model Zoo on VOC ### Model Zoo on VOC
......
...@@ -71,6 +71,18 @@ PP-YOLOE由以下方法组成 ...@@ -71,6 +71,18 @@ PP-YOLOE由以下方法组成
- 如果你设置了`--run_benchmark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil` - 如果你设置了`--run_benchmark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil`
- 端到端速度测试包含模型前处理 + 模型推理 + 模型后处理及NMS的时间,测试使用**Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **单卡V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6** - 端到端速度测试包含模型前处理 + 模型推理 + 模型后处理及NMS的时间,测试使用**Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz**, **单卡V100**, **CUDA 11.2**, **CUDNN 8.2.0**, **TensorRT 8.0.1.6**
### Objects365数据集模型库
| 模型 | Epoch | 机器个数 | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP<sup>0.5 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 |
|:---------------:|:-----:|:-----------:|:-----------:|:-----------:|:---------:|:----------:|:--------------:|:---------:|:---------:|:-------------:|:-----------------------:| :--------:|:--------:|
| PP-YOLOE+_s | 60 | 3 | 8 | 8 | cspresnet-s | 640 | 18.1 | 7.93 | 17.36 | 208.3 | 333.3 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_s_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_s_60e_objects365.yml) |
| PP-YOLOE+_m | 60 | 4 | 8 | 8 | cspresnet-m | 640 | 25.0 | 23.43 | 49.91 | 123.4 | 208.3 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_m_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_m_60e_objects365.yml) |
| PP-YOLOE+_l | 60 | 3 | 8 | 8 | cspresnet-l | 640 | 30.8 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_l_60e_objects365.yml) |
| PP-YOLOE+_x | 60 | 4 | 8 | 8 | cspresnet-x | 640 | 32.7 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_x_obj365_pretrained.pdparams) | [config](./ppyoloe_plus_crn_x_60e_objects365.yml) |
**注意:**
- 多机训练细节见[文档](../../docs/tutorials/DistributedTraining_cn.md)
### VOC数据集模型库 ### VOC数据集模型库
| 模型 | Epoch | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP<sup>0.5 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 | | 模型 | Epoch | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP<sup>0.5 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 |
......
epoch: 60
LearningRate:
base_lr: 0.001
schedulers:
- !CosineDecay
max_epochs: 72
- !LinearWarmup
start_factor: 0.
epochs: 1
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
_BASE_: [
'../datasets/objects365_detection.yml',
'../runtime.yml',
'./_base_/optimizer_60e.yml',
'./_base_/ppyoloe_plus_crn.yml',
'./_base_/ppyoloe_plus_reader.yml',
]
log_iter: 100
snapshot_epoch: 5
weights: output/ppyoloe_plus_crn_l_60e_objects365/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_l_pretrained.pdparams
CSPResNet:
use_alpha: False
PPYOLOEHead:
static_assigner_epoch: 20
depth_mult: 1.0
width_mult: 1.0
_BASE_: [
'../datasets/objects365_detection.yml',
'../runtime.yml',
'./_base_/optimizer_60e.yml',
'./_base_/ppyoloe_plus_crn.yml',
'./_base_/ppyoloe_plus_reader.yml',
]
log_iter: 100
snapshot_epoch: 5
weights: output/ppyoloe_plus_crn_m_60e_objects365/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_m_pretrained.pdparams
CSPResNet:
use_alpha: False
PPYOLOEHead:
static_assigner_epoch: 20
depth_mult: 0.67
width_mult: 0.75
_BASE_: [
'../datasets/objects365_detection.yml',
'../runtime.yml',
'./_base_/optimizer_60e.yml',
'./_base_/ppyoloe_plus_crn.yml',
'./_base_/ppyoloe_plus_reader.yml',
]
log_iter: 100
snapshot_epoch: 5
weights: output/ppyoloe_plus_crn_s_60e_objects365/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_s_pretrained.pdparams
CSPResNet:
use_alpha: False
PPYOLOEHead:
static_assigner_epoch: 20
depth_mult: 0.33
width_mult: 0.50
_BASE_: [
'../datasets/objects365_detection.yml',
'../runtime.yml',
'./_base_/optimizer_60e.yml',
'./_base_/ppyoloe_plus_crn.yml',
'./_base_/ppyoloe_plus_reader.yml',
]
log_iter: 100
snapshot_epoch: 5
weights: output/ppyoloe_plus_crn_x_60e_objects365/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_x_pretrained.pdparams
CSPResNet:
use_alpha: False
PPYOLOEHead:
static_assigner_epoch: 20
depth_mult: 1.33
width_mult: 1.25
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册