Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0f7c4071
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0f7c4071
编写于
9月 21, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vgg and script for mkldnn benchmark
上级
ed27a3be
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
150 addition
and
1 deletion
+150
-1
benchmark/paddle/image/provider.py
benchmark/paddle/image/provider.py
+1
-1
benchmark/paddle/image/run.mkldnn.sh
benchmark/paddle/image/run.mkldnn.sh
+46
-0
benchmark/paddle/image/vgg.py
benchmark/paddle/image/vgg.py
+103
-0
未找到文件。
benchmark/paddle/image/provider.py
浏览文件 @
0f7c4071
...
@@ -22,5 +22,5 @@ def initHook(settings, height, width, color, num_class, **kwargs):
...
@@ -22,5 +22,5 @@ def initHook(settings, height, width, color, num_class, **kwargs):
def
process
(
settings
,
file_list
):
def
process
(
settings
,
file_list
):
for
i
in
xrange
(
1024
):
for
i
in
xrange
(
1024
):
img
=
np
.
random
.
rand
(
1
,
settings
.
data_size
).
reshape
(
-
1
,
1
).
flatten
()
img
=
np
.
random
.
rand
(
1
,
settings
.
data_size
).
reshape
(
-
1
,
1
).
flatten
()
lab
=
random
.
randint
(
0
,
settings
.
num_class
)
lab
=
random
.
randint
(
0
,
settings
.
num_class
-
1
)
yield
img
.
astype
(
'float32'
),
int
(
lab
)
yield
img
.
astype
(
'float32'
),
int
(
lab
)
benchmark/paddle/image/run.mkldnn.sh
0 → 100755
浏览文件 @
0f7c4071
set
-e
function
train
()
{
topology
=
$1
bs
=
$2
thread
=
1
if
[
$3
]
;
then
thread
=
$3
fi
if
[
$thread
-eq
1
]
;
then
use_mkldnn
=
1
log
=
"logs/
${
topology
}
-mkldnn-
${
bs
}
.log"
else
use_mkldnn
=
0
log
=
"logs/
${
topology
}
-
${
thread
}
mklml-
${
bs
}
.log"
fi
args
=
"batch_size=
${
bs
}
"
config
=
"
${
topology
}
.py"
paddle train
--job
=
time
\
--config
=
$config
\
--use_mkldnn
=
$use_mkldnn
\
--use_gpu
=
False
\
--trainer_count
=
$thread
\
--log_period
=
10
\
--test_period
=
100
\
--config_args
=
$args
\
2>&1 |
tee
${
log
}
}
if
[
!
-d
"train.list"
]
;
then
echo
" "
>
train.list
fi
if
[
!
-d
"logs"
]
;
then
mkdir
logs
fi
#========= mkldnn =========#
# vgg
train vgg 64
train vgg 128
train vgg 256
#========== mklml ===========#
train vgg 64 16
train vgg 128 16
train vgg 256 16
benchmark/paddle/image/vgg.py
0 → 100644
浏览文件 @
0f7c4071
#!/usr/bin/env python
from
paddle.trainer_config_helpers
import
*
height
=
224
width
=
224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
'layer_num'
,
int
,
16
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
define_py_data_sources2
(
"train.list"
,
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
settings
(
batch_size
=
batch_size
,
learning_rate
=
0.01
/
batch_size
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
img
=
data_layer
(
name
=
'image'
,
size
=
height
*
width
*
3
)
def
vgg_network
(
vgg_num
=
3
):
tmp
=
img_conv_group
(
input
=
img
,
num_channels
=
3
,
conv_padding
=
1
,
conv_num_filter
=
[
64
,
64
],
conv_filter_size
=
3
,
conv_act
=
ReluActivation
(),
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
MaxPooling
())
tmp
=
img_conv_group
(
input
=
tmp
,
conv_num_filter
=
[
128
,
128
],
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_act
=
ReluActivation
(),
pool_stride
=
2
,
pool_type
=
MaxPooling
(),
pool_size
=
2
)
channels
=
[]
for
i
in
range
(
vgg_num
):
channels
.
append
(
256
)
tmp
=
img_conv_group
(
input
=
tmp
,
conv_num_filter
=
channels
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_act
=
ReluActivation
(),
pool_stride
=
2
,
pool_type
=
MaxPooling
(),
pool_size
=
2
)
channels
=
[]
for
i
in
range
(
vgg_num
):
channels
.
append
(
512
)
tmp
=
img_conv_group
(
input
=
tmp
,
conv_num_filter
=
channels
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_act
=
ReluActivation
(),
pool_stride
=
2
,
pool_type
=
MaxPooling
(),
pool_size
=
2
)
tmp
=
img_conv_group
(
input
=
tmp
,
conv_num_filter
=
channels
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_act
=
ReluActivation
(),
pool_stride
=
2
,
pool_type
=
MaxPooling
(),
pool_size
=
2
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
4096
,
act
=
ReluActivation
(),
layer_attr
=
ExtraAttr
(
drop_rate
=
0.5
))
tmp
=
fc_layer
(
input
=
tmp
,
size
=
4096
,
act
=
ReluActivation
(),
layer_attr
=
ExtraAttr
(
drop_rate
=
0.5
))
return
fc_layer
(
input
=
tmp
,
size
=
num_class
,
act
=
SoftmaxActivation
())
if
layer_num
==
16
:
vgg
=
vgg_network
(
3
)
elif
layer_num
==
19
:
vgg
=
vgg_network
(
4
)
else
:
print
(
"Wrong layer number."
)
lab
=
data_layer
(
'label'
,
num_class
)
loss
=
cross_entropy
(
input
=
vgg
,
label
=
lab
)
outputs
(
loss
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录