From 0f1b30ef8634751225d1ba34698b815fe2fa3c69 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Sun, 5 Nov 2017 01:19:50 +0800 Subject: [PATCH] fix doc and unit test --- paddle/operators/conv_transpose_op.cc | 47 +++++++++++-------- paddle/operators/conv_transpose_op.h | 12 ++++- .../tests/test_conv2d_transpose_op.py | 29 ++++++------ .../tests/test_conv3d_transpose_op.py | 6 +-- 4 files changed, 55 insertions(+), 39 deletions(-) diff --git a/paddle/operators/conv_transpose_op.cc b/paddle/operators/conv_transpose_op.cc index dcf30023f..3362124b3 100644 --- a/paddle/operators/conv_transpose_op.cc +++ b/paddle/operators/conv_transpose_op.cc @@ -65,16 +65,17 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( "Input", "(Tensor) The input tensor of convolution transpose operator. " "The format of input tensor is NCHW. Where N is batch size, C is the " - "number of input channels, H and W is the height and width of image."); + "number of input channels, H is the height of the feature, and " + "W is the width of the feature."); AddInput("Filter", - "(Tensor) The filter tensor of convolution transpose operator." + "(Tensor) The filter tensor of convolution transpose operator. " "The format of the filter tensor is CMHW, where C is the number of " "output image channels, M is the number of input image channels, " - "H and W is height and width of filter. " + "H is the height of the filter, and W is the width of the filter. " "We enforce groups number == 1 and padding == 0 in " - "convolution transpose Scenario."); + "the convolution transpose scenario."); AddOutput("Output", - "(Tensor) The output tensor of convolution transpose operator." + "(Tensor) The output tensor of convolution transpose operator. " "The format of output tensor is also NCHW."); AddAttr>( "strides", @@ -85,13 +86,15 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( "(vector defalut:{0, 0}), paddings of convolution transpose operator.") .SetDefault({0, 0}); AddComment(R"DOC( +Convolution2D Transpose Operator. + The convolution transpose operation calculates the output based on the input, filter and strides, paddings, groups parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch -size, C is the number of channels, H and W is the height and -width of feature. Parameters(ksize, strides, paddings) are two elements. +size, C is the number of channels, H is the height of the feature, and +W is the width of the feature. Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively. The input(X) size and output(Out) size may be different. Example: @@ -109,25 +112,26 @@ Example: Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput( - "Input", - "(Tensor) The input tensor of convolution transpose operator." - "The format of input tensor is NCDHW. Where N is batch size, C is " - "the number of channels, D, H and W is the depth, height and width of " - "feature."); + AddInput("Input", + "(Tensor) The input tensor of convolution transpose operator." + "The format of input tensor is NCDHW. Where N is batch size, C is " + "the number of channels, D is the depth of the feature, H is the " + "height of the feature, and " + "W is the width of the feature."); AddInput("Filter", "(Tensor) The filter tensor of convolution transpose operator." "The format of the filter tensor is CMDHW, where C is the number of " - "output image channels, M is the number of input image channels, " - "D, H and W is depth, height and width of filter. " + "output image channels, M is the number of input image channels, D " + "is the depth of the filter, H is the height of the filter, and " + "W is the width of the filter." "We enforce groups number == 1 and padding == 0 in " - "convolution transpose Scenario."); + "the convolution3d transpose scenario."); AddOutput("Output", "(Tensor) The output tensor of convolution transpose operator." "The format of output tensor is also NCDHW." "Where N is batch size, C is " - "the number of channels, D, H and W is the depth, height and " - "width of feature."); + "the number of channels, D is the depth of the feature, H is the " + "height of the feature, and W is the width of the feature."); AddAttr>( "strides", "(vector defalut:{1, 1, 1}), strides of convolution transpose operator.") @@ -137,13 +141,16 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( "(vector defalut:{0, 0, 0}), paddings of convolution transpose operator.") .SetDefault({0, 0, 0}); AddComment(R"DOC( +Convolution3D Transpose Operator. + The convolution transpose operation calculates the output based on the input, filter and strides, paddings, groups parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch -size, C is the number of channels, d, H and W is the depth, height and -width of feature. Parameters(ksize, strides, paddings) are three elements. +size, C is the number of channels, D is the depth of the feature, +H is the height of the feature, and W is the width of the feature. +Parameters(ksize, strides, paddings) are three elements. These three elements represent depth, height and width, respectively. The input(X) size and output(Out) size may be different. Example: diff --git a/paddle/operators/conv_transpose_op.h b/paddle/operators/conv_transpose_op.h index cc2cfe4e6..f9db5990b 100644 --- a/paddle/operators/conv_transpose_op.h +++ b/paddle/operators/conv_transpose_op.h @@ -175,6 +175,10 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel { DDim filter_matrix_shape = {m, c * k_h * k_w}; filter.Resize(filter_matrix_shape); + if ((!input_grad) && (!filter_grad)) { + return; + } + // convolution transpose grad on input: // im2col + gemm (similar to conv-forward) // input need to compute gradient @@ -265,7 +269,7 @@ class GemmConv3DTransposeKernel : public framework::OpKernel { const int64_t o_h = output->dims()[3]; const int64_t o_w = output->dims()[4]; - paddle::operators::math::Col2VolFunctor col2vol; + math::Col2VolFunctor col2vol; // use col_shape in the vol2col and col2vol calculation DDim col_shape = {c, k_d, k_h, k_w, d, h, w}; @@ -349,7 +353,7 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel { const int64_t o_w = output_grad->dims()[4]; // Only vol2col functor required for bp to get to the right shape - paddle::operators::math::Vol2ColFunctor vol2col; + math::Vol2ColFunctor vol2col; // use col_shape in the vol2col and col2vol calculation DDim col_shape = {c, k_d, k_h, k_w, d, h, w}; @@ -363,6 +367,10 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel { DDim filter_matrix_shape = {m, c * k_d * k_h * k_w}; filter.Resize(filter_matrix_shape); + if ((!input_grad) && (!filter_grad)) { + return; + } + // convolution transpose grad on input: // vol2col + gemm (similar to conv-forward) // input need to compute gradient diff --git a/python/paddle/v2/framework/tests/test_conv2d_transpose_op.py b/python/paddle/v2/framework/tests/test_conv2d_transpose_op.py index 999a0bdc6..54349c018 100644 --- a/python/paddle/v2/framework/tests/test_conv2d_transpose_op.py +++ b/python/paddle/v2/framework/tests/test_conv2d_transpose_op.py @@ -58,36 +58,37 @@ class TestConv2dTransposeOp(OpTest): print 'check output here for', self.op_type self.check_output() - def init_test_case(self): - self.pad = [0, 0] - self.stride = [1, 1] - self.dilations = [1, 1] - self.input_size = [2, 3, 5, 5] # NCHW - f_c = self.input_size[1] - self.filter_size = [f_c, 6, 3, 3] - - def init_op_type(self): - self.op_type = "conv2d_transpose" - def test_check_grad_no_input(self): self.check_grad( ['Filter'], 'Output', - max_relative_error=0.05, + max_relative_error=0.02, no_grad_set=set(['Input'])) def test_check_grad_no_filter(self): self.check_grad( ['Input'], 'Output', - max_relative_error=0.05, + max_relative_error=0.02, no_grad_set=set(['Filter'])) def test_check_grad(self): self.check_grad( - set(['Input', 'Filter']), 'Output', max_relative_error=0.05) + set(['Input', 'Filter']), 'Output', max_relative_error=0.02) + + def init_test_case(self): + self.pad = [0, 0] + self.stride = [1, 1] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + def init_op_type(self): + self.op_type = "conv2d_transpose" +# ------------ test_cudnn ------------ class TestCudnn(TestConv2dTransposeOp): def init_op_type(self): self.op_type = "conv2d_transpose_cudnn" diff --git a/python/paddle/v2/framework/tests/test_conv3d_transpose_op.py b/python/paddle/v2/framework/tests/test_conv3d_transpose_op.py index 038cc08d6..132fe7931 100644 --- a/python/paddle/v2/framework/tests/test_conv3d_transpose_op.py +++ b/python/paddle/v2/framework/tests/test_conv3d_transpose_op.py @@ -65,20 +65,20 @@ class TestConv3dTransposeOp(OpTest): def test_check_grad(self): self.check_grad( - set(['Input', 'Filter']), 'Output', max_relative_error=0.05) + set(['Input', 'Filter']), 'Output', max_relative_error=0.02) def test_check_grad_no_filter(self): self.check_grad( ['Input'], 'Output', - max_relative_error=0.05, + max_relative_error=0.02, no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): self.check_grad( ['Filter'], 'Output', - max_relative_error=0.05, + max_relative_error=0.02, no_grad_set=set(['Input'])) def init_test_case(self): -- GitLab