From 0f18fbfae22d775730541b05a4467bb8ab2f2d6e Mon Sep 17 00:00:00 2001 From: ruri Date: Fri, 12 Apr 2019 18:42:16 +0800 Subject: [PATCH] =?UTF-8?q?cherry=20pick=2015782=EF=BC=8C16763=20(#16805)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * cherry-pick 16763,test=release/1.4 * cherry-pick 16763, test=release/1.4 * fix some comments, include cosine_decay,l2_normalize,pixel_shuffle * Add api.spec, test=develop * update api.spec, test=develop * add api.spec,test=develop * test=develop * test=develop * fix conflict,test=develop * Add Pixel shuffle OP (#15782) * add pixel_shuffle op * add pixel_shuffle op, test=develop * rewrite code, test=develop * delete useless comment, test=develop * Refine pixel_shuffle_op and unit testing * refine code,test=develop * refine .cu,test=develop * fix unittest,test=develop * Fix unit testing test=develop * resolve conflict, test=develop * fix test, test=develop * fix API, test=develop * fix test datatype bug,test=develop * polish comments,test=develop * add API,test=develop * test=develop * Add Pixel_Shuffle OP,test=develop * support python3,test=develop * add include memory to travis CI bug,test=develop * cherry-pick 16763,15782 , test=release/1.4 --- paddle/fluid/API.spec | 5 +- paddle/fluid/operators/pixel_shuffle_op.cc | 135 ++++++++++++++++++ paddle/fluid/operators/pixel_shuffle_op.cu | 26 ++++ paddle/fluid/operators/pixel_shuffle_op.h | 82 +++++++++++ .../fluid/layers/learning_rate_scheduler.py | 20 +-- python/paddle/fluid/layers/nn.py | 62 +++++++- .../fluid/tests/unittests/test_layers.py | 8 ++ .../tests/unittests/test_pixel_shuffle.py | 50 +++++++ 8 files changed, 376 insertions(+), 12 deletions(-) create mode 100644 paddle/fluid/operators/pixel_shuffle_op.cc create mode 100644 paddle/fluid/operators/pixel_shuffle_op.cu create mode 100644 paddle/fluid/operators/pixel_shuffle_op.h create mode 100644 python/paddle/fluid/tests/unittests/test_pixel_shuffle.py diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 8143bde30..581bf50e6 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -125,7 +125,7 @@ paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '652625345c2acb900029c78cc75f8aa6')) paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbf2adbd79683dc93db03454dfa18c2')) paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', '97f0262f97602644c83142789d784571')) -paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '6e428384ce6a77207fa2c70d9f011990')) +paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '35c6a241bcc1a1fc89508860d82ad62b')) paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'b4cbe1ac451005df6dad12e9ffdccca9')) paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd3570c02f71bcd78e60b3f31dc8f5b32')) paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, False, False)), ('document', 'aaba49c038ba927f0a8e45c0c9a686ab')) @@ -236,6 +236,7 @@ paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], vararg paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '776d536cac47c89073abc7ee524d5aec')) paddle.fluid.layers.tree_conv (ArgSpec(args=['nodes_vector', 'edge_set', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None)), ('document', '34ea12ac9f10a65dccbc50100d12e607')) paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '46994d10276dd4cb803b4062b5d14329')) +paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '731b21c62a4add60a33bd76d802ffc5c')) paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', 'b76ccca3735bea4a58a0dbf0d77c5393')) paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '33bbd42027d872b3818b3d64ec52e139')) paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'b1ae2e1cc0750e58726374061ea90ecc')) @@ -361,7 +362,7 @@ paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_step paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'c717d9d1d78a53c809d01b8bc56f3cae')) paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'd9a95746353fd574be36dc28d8726c28')) paddle.fluid.layers.append_LARS (ArgSpec(args=['params_grads', 'learning_rate', 'weight_decay'], varargs=None, keywords=None, defaults=None), ('document', 'd24fa1e7d62ac8a534fc6a86002f84f8')) -paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', '9588c64c26ffaef3c466e404a6af9d9b')) +paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', 'f8b2727bccf0f368c997d7cf05847e49')) paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', '2ef3f5ca5cd71ea4217c418e5a7a0565')) paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.contrib.StateCell.__init__ (ArgSpec(args=['self', 'inputs', 'states', 'out_state', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) diff --git a/paddle/fluid/operators/pixel_shuffle_op.cc b/paddle/fluid/operators/pixel_shuffle_op.cc new file mode 100644 index 000000000..59ba660af --- /dev/null +++ b/paddle/fluid/operators/pixel_shuffle_op.cc @@ -0,0 +1,135 @@ +/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/pixel_shuffle_op.h" +#include + +namespace paddle { +namespace operators { + +class PixelShuffleOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of PixelShuffleOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of PixelShuffleOp should not be null."); + + auto input_dims = ctx->GetInputDim("X"); + PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW."); + auto upscale_factor = ctx->Attrs().Get("upscale_factor"); + + PADDLE_ENFORCE(input_dims[1] % (upscale_factor * upscale_factor) == 0, + "Upscale_factor should devide the number of channel"); + + auto output_dims = input_dims; + output_dims[0] = input_dims[0]; + output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor); + output_dims[2] = input_dims[2] * upscale_factor; + output_dims[3] = input_dims[3] * upscale_factor; + ctx->SetOutputDim("Out", output_dims); + } +}; + +class PixelShuffleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput( + "X", + "(Tensor, default Tensor), " + "the input feature data of PixelShuffleOp, the layout is [N C H W]."); + AddOutput( + "Out", + "(Tensor, default Tensor), the output of " + "PixelShuffleOp. The layout is [N,C/factor^2,H*factor,W*factor]."); + AddAttr("upscale_factor", + "the factor to increase spatial resolution by.") + .SetDefault(1) + .AddCustomChecker([](const int& upscale_factor) { + PADDLE_ENFORCE_GE(upscale_factor, 1, + "upscale_factor should be larger than 0."); + }); + + AddComment(R"DOC( + Pixel Shuffle operator + This operator rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` + to a tensor of shape :math:`(C, H \times r, W \times r)`. + + This is useful for implementing efficient sub-pixel convolution + with a stride of :math:`1/r`. + + Please refer to the paper: + `Real-Time Single Image and Video Super-Resolution Using an Efficient + Sub-Pixel Convolutional Neural Network `_ + by Shi et. al (2016) for more details. + + )DOC"); + } +}; + +class PixelShuffleGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto* op = new framework::OpDesc(); + op->SetType("pixel_shuffle_grad"); + op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + op->SetAttrMap(Attrs()); + op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + return std::unique_ptr(op); + } +}; + +class PixelShuffleGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@Grad) should not be null"); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Output(X@Grad) should not be null"); + + auto do_dims = ctx->GetInputDim(framework::GradVarName("Out")); + PADDLE_ENFORCE(do_dims.size() == 4, "The layout of input is NCHW."); + + auto upscale_factor = ctx->Attrs().Get("upscale_factor"); + + auto dx_dims = do_dims; + dx_dims[0] = do_dims[0]; + dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor); + dx_dims[2] = do_dims[2] / upscale_factor; + dx_dims[3] = do_dims[3] / upscale_factor; + ctx->SetOutputDim(framework::GradVarName("X"), dx_dims); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(pixel_shuffle, ops::PixelShuffleOp, ops::PixelShuffleOpMaker, + ops::PixelShuffleGradMaker); + +REGISTER_OPERATOR(pixel_shuffle_grad, ops::PixelShuffleGradOp); + +REGISTER_OP_CPU_KERNEL( + pixel_shuffle, + ops::PixelShuffleOpKernel, + ops::PixelShuffleOpKernel); + +REGISTER_OP_CPU_KERNEL( + pixel_shuffle_grad, + ops::PixelShuffleGradOpKernel, + ops::PixelShuffleGradOpKernel); diff --git a/paddle/fluid/operators/pixel_shuffle_op.cu b/paddle/fluid/operators/pixel_shuffle_op.cu new file mode 100644 index 000000000..6faf91079 --- /dev/null +++ b/paddle/fluid/operators/pixel_shuffle_op.cu @@ -0,0 +1,26 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/pixel_shuffle_op.h" + +namespace ops = paddle::operators; +namespace plat = paddle::platform; + +REGISTER_OP_CUDA_KERNEL( + pixel_shuffle, ops::PixelShuffleOpKernel, + ops::PixelShuffleOpKernel); +REGISTER_OP_CUDA_KERNEL( + pixel_shuffle_grad, + ops::PixelShuffleGradOpKernel, + ops::PixelShuffleGradOpKernel); diff --git a/paddle/fluid/operators/pixel_shuffle_op.h b/paddle/fluid/operators/pixel_shuffle_op.h new file mode 100644 index 000000000..1ae1c7e9d --- /dev/null +++ b/paddle/fluid/operators/pixel_shuffle_op.h @@ -0,0 +1,82 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +template +class PixelShuffleOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto* out = ctx.Output("Out"); + out->mutable_data(ctx.GetPlace()); + + int factor = ctx.Attr("upscale_factor"); + + auto in_dims = in->dims(); + auto o_dims = out->dims(); + + framework::Tensor t; + t.ShareDataWith(*in); + t.Resize({in_dims[0], o_dims[1], factor, factor, in_dims[2], in_dims[3]}); + + std::vector axis = {0, 1, 4, 2, 5, 3}; + + framework::Tensor o; + o.ShareDataWith(*out); + o.Resize({in_dims[0], o_dims[1], in_dims[2], factor, in_dims[3], factor}); + + math::Transpose trans; + auto& dev_ctx = ctx.template device_context(); + trans(dev_ctx, t, &o, axis); + out->Resize(o_dims); + } +}; + +template +class PixelShuffleGradOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + dx->mutable_data(ctx.GetPlace()); + + int factor = ctx.Attr("upscale_factor"); + + auto do_dims = dout->dims(); + auto dx_dims = dx->dims(); + + framework::Tensor t; + t.ShareDataWith(*dout); + t.Resize({do_dims[0], do_dims[1], dx_dims[2], factor, dx_dims[3], factor}); + + std::vector axis = {0, 1, 3, 5, 2, 4}; + + framework::Tensor o; + o.ShareDataWith(*dx); + o.Resize({do_dims[0], do_dims[1], factor, factor, dx_dims[2], dx_dims[3]}); + + math::Transpose trans; + auto& dev_ctx = ctx.template device_context(); + trans(dev_ctx, t, &o, axis); + dx->Resize(dx_dims); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/python/paddle/fluid/layers/learning_rate_scheduler.py b/python/paddle/fluid/layers/learning_rate_scheduler.py index b7d1eeba8..72a2c845b 100644 --- a/python/paddle/fluid/layers/learning_rate_scheduler.py +++ b/python/paddle/fluid/layers/learning_rate_scheduler.py @@ -349,24 +349,26 @@ def cosine_decay(learning_rate, step_each_epoch, epochs): training progresses. By using this function, the learning rate will be decayed by following cosine decay strategy. - decayed_lr = learning_rate * 0.5 * (math.cos(epoch * math.pi / epochs) + 1) + .. math:: + + decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1) Args: learning_rate(Variable|float): The initial learning rate. step_each_epoch(int): the number of steps in an epoch. epochs(int): the number of epochs. - Returns: - Variable: The decayed learning rate. - - Examples: + Returns: + Variable: The decayed learning rate. - ..code-block:: python + Examples: + .. code-block:: python - base_lr = 0.1 - lr = fluid.layers.cosine_decay( - learning_rate = base_lr, step_each_epoch=10000, epochs=120) + base_lr = 0.1 + lr = fluid.layers.cosine_decay( + learning_rate = base_lr, step_each_epoch=10000, epochs=120) """ + with default_main_program()._lr_schedule_guard(): if imperative_base.enabled(): decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch, diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index e69298d52..7dbd26cb9 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -191,6 +191,7 @@ __all__ = [ 'kldiv_loss', 'tree_conv', 'npair_loss', + 'pixel_shuffle', 'fsp_matrix', ] @@ -4792,7 +4793,7 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): the dimension to normalization is rank(X) + axis. -1 is the last dimension. epsilon(float): The epsilon value is used to avoid division by zero, \ - the defalut value is 1e-10. + the defalut value is 1e-12. name(str|None): A name for this layer(optional). If set None, the layer \ will be named automatically. @@ -10923,6 +10924,65 @@ def npair_loss(anchor, positive, labels, l2_reg=0.002): return l2loss + celoss +def pixel_shuffle(x, upscale_factor): + """ + + **Pixel Shuffle Layer** + + This layer rearranges elements in a tensor of shape [N, C, H, W] + to a tensor of shape [N, C/r**2, H*r, W*r]. + This is useful for implementing efficient sub-pixel convolution + with a stride of 1/r. + Please refer to the paper: `Real-Time Single Image and Video Super-Resolution + Using an Efficient Sub-Pixel Convolutional Neural Network `_ . + by Shi et. al (2016) for more details. + + .. code-block:: text + + Given a 4-D tensor with the shape: + x.shape = [1, 9, 4, 4] + Given upscale_factor: + upscale_factor= 3 + output shape is: + [1, 1, 12, 12] + + Args: + + x(Variable): The input tensor variable. + upscale_factor(int): factor to increase spatial resolution + + Returns: + + Out(Variable): Reshaped tensor according to the new dimension. + + Raises: + + ValueError: If the square of upscale_factor cannot divide the channels of input. + + Examples: + + .. code-block:: python + + input = fluid.layers.data(shape=[9,4,4]) + output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3) + + """ + + helper = LayerHelper("pixel_shuffle", **locals()) + + out = helper.create_variable_for_type_inference(dtype=x.dtype) + + if not isinstance(upscale_factor, int): + raise TypeError("upscale factor must be int type") + + helper.append_op( + type="pixel_shuffle", + inputs={"X": x}, + outputs={"Out": out}, + attrs={"upscale_factor": upscale_factor}) + return out + + def fsp_matrix(x, y): """ diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 5b5664470..6020246da 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -1892,6 +1892,14 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(out) print(str(program)) + def test_pixel_shuffle(self): + program = Program() + with program_guard(program): + x = layers.data(name="X", shape=[9, 4, 4], dtype="float32") + out = layers.pixel_shuffle(x, upscale_factor=3) + self.assertIsNotNone(out) + print(str(program)) + def test_fsp(self): program = Program() with program_guard(program): diff --git a/python/paddle/fluid/tests/unittests/test_pixel_shuffle.py b/python/paddle/fluid/tests/unittests/test_pixel_shuffle.py new file mode 100644 index 000000000..cc3ae2b3b --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_pixel_shuffle.py @@ -0,0 +1,50 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +from op_test import OpTest + + +class TestPixelShuffle(OpTest): + def setUp(self): + self.op_type = "pixel_shuffle" + n, c, h, w = 2, 9, 4, 4 + up_factor = 3 + shape = [n, c, h, w] + x = np.random.random(shape).astype("float32") + new_shape = (n, c // (up_factor * up_factor), up_factor, up_factor, h, + w) + # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w) + npresult = np.reshape(x, new_shape) + # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor) + npresult = npresult.transpose(0, 1, 4, 2, 5, 3) + oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor] + npresult = np.reshape(npresult, oshape) + + self.inputs = {'X': x} + self.outputs = {'Out': npresult} + self.attrs = {'upscale_factor': up_factor} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +if __name__ == '__main__': + unittest.main() -- GitLab