提交 0f148a62 编写于 作者: D dengkaipeng

add isr_p

上级 032ba319
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
__all__ = ['get_isr_p_func']
def get_isr_p_func(pos_iou_thresh=0.25, bias=0, k=2):
def irs_p(x):
np.save("data", x)
x = np.array(x)
max_ious = x[:, :, 0]
gt_inds = x[:, :, 1].astype('int32')
cls = x[:, :, 2].astype('int32')
# # n_{max}: max gt box num in each class
# valid_gt = gt_box[:, :, 2] > 0.
# valid_gt_label = gt_label[valid_gt]
# max_l_num = np.bincount(valid_gt_label).max()
# divide gt index in each sample
gt_inds = gt_inds + np.arange(gt_inds.shape[
0])[:, np.newaxis] * gt_inds.shape[1]
all_pos_weights = np.ones_like(max_ious)
pos_mask = max_ious > pos_iou_thresh
cls = np.reshape(cls, list(max_ious.shape) + [-1])
max_ious = max_ious[pos_mask]
pos_weights = all_pos_weights[pos_mask]
gt_inds = gt_inds[pos_mask]
cls = cls[pos_mask]
max_l_num = np.bincount(cls.reshape(-1)).max()
for l in np.unique(cls):
l_inds = np.nonzero(cls == l)[0]
l_gt_inds = gt_inds[l_inds]
for t in np.unique(l_gt_inds):
t_inds = np.array(l_inds)[l_gt_inds == t]
t_max_ious = max_ious[t_inds]
t_max_iou_rank = np.argsort(-t_max_ious).argsort().astype(
'float32')
max_ious[t_inds] += np.clip(t_max_iou_rank, 0., None)
l_max_ious = max_ious[l_inds]
l_max_iou_rank = np.argsort(-l_max_ious).argsort().astype('float32')
weight_factor = np.clip(max_l_num - l_max_iou_rank, 0.,
None) / max_l_num
weight_factor = np.power(bias + (1 - bias) * weight_factor, k)
pos_weights[l_inds] *= weight_factor * 1.2
pos_weights = pos_weights / np.mean(pos_weights)
all_pos_weights[pos_mask] = pos_weights
return all_pos_weights
return irs_p
if __name__ == "__main__":
import numpy as np
import paddle.fluid as fluid
x_np = np.load('./data.npy')
x = fluid.data(name='x', shape=[8, 15552, 3], dtype='float32')
pos_weights = fluid.default_main_program().current_block().create_var(
name="pos_weights", dtype='float32', shape=[8, 15552])
isr_p = get_isr_p_func()
fluid.layers.py_func(isr_p, x, pos_weights)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
ret = exe.run(fetch_list=[pos_weights.name], feed={'x': x_np})
print(ret)
np.save("ret", ret[0])
...@@ -18,6 +18,7 @@ from __future__ import print_function ...@@ -18,6 +18,7 @@ from __future__ import print_function
from paddle import fluid from paddle import fluid
from ppdet.core.workspace import register from ppdet.core.workspace import register
from .pisa_utils import get_isr_p_func
try: try:
from collections.abc import Sequence from collections.abc import Sequence
except Exception: except Exception:
...@@ -65,8 +66,8 @@ class YOLOv3Loss(object): ...@@ -65,8 +66,8 @@ class YOLOv3Loss(object):
anchor_masks, mask_anchors, num_classes, prefix_name): anchor_masks, mask_anchors, num_classes, prefix_name):
if self._use_fine_grained_loss: if self._use_fine_grained_loss:
return self._get_fine_grained_loss( return self._get_fine_grained_loss(
outputs, targets, gt_box, self._batch_size, num_classes, outputs, targets, gt_box, gt_label, self._batch_size,
mask_anchors, self._ignore_thresh) num_classes, mask_anchors, self._ignore_thresh)
else: else:
losses = [] losses = []
for i, output in enumerate(outputs): for i, output in enumerate(outputs):
...@@ -91,8 +92,9 @@ class YOLOv3Loss(object): ...@@ -91,8 +92,9 @@ class YOLOv3Loss(object):
return {'loss': sum(losses)} return {'loss': sum(losses)}
def _get_fine_grained_loss(self, outputs, targets, gt_box, batch_size, def _get_fine_grained_loss(self, outputs, targets, gt_box, gt_label,
num_classes, mask_anchors, ignore_thresh): batch_size, num_classes, mask_anchors,
ignore_thresh):
""" """
Calculate fine grained YOLOv3 loss Calculate fine grained YOLOv3 loss
...@@ -135,6 +137,38 @@ class YOLOv3Loss(object): ...@@ -135,6 +137,38 @@ class YOLOv3Loss(object):
num_classes) num_classes)
tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target) tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target)
scale_x_y = self.scale_x_y if not isinstance(
self.scale_x_y, Sequence) else self.scale_x_y[i]
iou = self._calc_iou(output, target, gt_box, anchors, batch_size,
num_classes, downsample, scale_x_y)
# sorted_iou, sorted_gt_inds = fluid.layers.argsort(iou, axis=-1, descending=True)
# max_iou = sorted_iou[:, :, 0:1]
# gt_inds = fluid.layers.cast(sorted_gt_inds[:, :, 0:1], dtype='float32')
# pred_cls = fluid.layers.argmax(cls, axis=-1)
# pred_cls = fluid.layers.reshape(pred_cls, [batch_size, -1, 1])
# pred_cls = fluid.layers.cast(pred_cls, dtype='float32')
# isr_p_input = fluid.layers.concat([max_iou, gt_inds, pred_cls], axis=-1)
# isr_p = get_isr_p_func()
# pos_weights = fluid.layers.zeros_like(max_iou)
# fluid.layers.py_func(isr_p, isr_p_input, pos_weights)
#
# tobj_shape = fluid.layers.shape(tobj)
# pos_weights = fluid.layers.reshape(pos_weights, (-1, an_num, tobj_shape[2],
# tobj_shape[3]))
# tobj = tobj * pos_weights
# isr_tobj = tobj * pos_weights
# loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
# pos_mask = fluid.layers.cast(pos_weights > 0., dtype='flaot32')
# orig_loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj * pos_mask, axis=0)
# orig_loss_cls = fluid.layers.reduce_sum(loss_cls)
# orig_loss_cls.stop_gradient = True
# new_loss_cls = fluid.layers.elementwise_mul(loss_cls, isr_tobj * pos_mask, axis=0)
# new_loss_cls = fluid.layers.reduce_sum(loss_cls)
# new_loss_cls.stop_gradient = True
# pos_loss_cls_ratio = orig_loss_cls / new_loss_cls
tscale_tobj = tscale * tobj tscale_tobj = tscale * tobj
loss_x = fluid.layers.sigmoid_cross_entropy_with_logits( loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
x, tx) * tscale_tobj x, tx) * tscale_tobj
...@@ -163,11 +197,8 @@ class YOLOv3Loss(object): ...@@ -163,11 +197,8 @@ class YOLOv3Loss(object):
loss_iou_aware, dim=[1, 2, 3]) loss_iou_aware, dim=[1, 2, 3])
loss_iou_awares.append(fluid.layers.reduce_mean(loss_iou_aware)) loss_iou_awares.append(fluid.layers.reduce_mean(loss_iou_aware))
scale_x_y = self.scale_x_y if not isinstance(
self.scale_x_y, Sequence) else self.scale_x_y[i]
loss_obj_pos, loss_obj_neg = self._calc_obj_loss( loss_obj_pos, loss_obj_neg = self._calc_obj_loss(
output, obj, tobj, gt_box, self._batch_size, anchors, output, obj, tobj, iou, an_num, self._ignore_thresh, scale_x_y)
num_classes, downsample, self._ignore_thresh, scale_x_y)
loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls) loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0) loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0)
...@@ -276,11 +307,8 @@ class YOLOv3Loss(object): ...@@ -276,11 +307,8 @@ class YOLOv3Loss(object):
return (tx, ty, tw, th, tscale, tobj, tcls) return (tx, ty, tw, th, tscale, tobj, tcls)
def _calc_obj_loss(self, output, obj, tobj, gt_box, batch_size, anchors, def _calc_iou(self, output, target, gt_box, anchors, batch_size,
num_classes, downsample, ignore_thresh, scale_x_y): num_classes, downsample, scale_x_y):
# A prediction bbox overlap any gt_bbox over ignore_thresh,
# objectness loss will be ignored, process as follows:
# 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
# NOTE: img_size is set as 1.0 to get noramlized pred bbox # NOTE: img_size is set as 1.0 to get noramlized pred bbox
bbox, prob = fluid.layers.yolo_box( bbox, prob = fluid.layers.yolo_box(
...@@ -302,7 +330,6 @@ class YOLOv3Loss(object): ...@@ -302,7 +330,6 @@ class YOLOv3Loss(object):
else: else:
preds = [bbox] preds = [bbox]
gts = [gt_box] gts = [gt_box]
probs = [prob]
ious = [] ious = []
for pred, gt in zip(preds, gts): for pred, gt in zip(preds, gts):
...@@ -322,9 +349,16 @@ class YOLOv3Loss(object): ...@@ -322,9 +349,16 @@ class YOLOv3Loss(object):
pred = fluid.layers.squeeze(pred, axes=[0]) pred = fluid.layers.squeeze(pred, axes=[0])
gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0])) gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0]))
ious.append(fluid.layers.iou_similarity(pred, gt)) ious.append(fluid.layers.iou_similarity(pred, gt))
iou = fluid.layers.stack(ious, axis=0) iou = fluid.layers.stack(ious, axis=0)
# 3. Get iou_mask by IoU between gt bbox and prediction bbox,
return iou
def _calc_obj_loss(self, output, obj, tobj, iou, an_num, ignore_thresh,
scale_x_y):
# A prediction bbox overlap any gt_bbox over ignore_thresh,
# objectness loss will be ignored, process as follows:
# Get iou_mask by IoU between gt bbox and prediction bbox,
# Get obj_mask by tobj(holds gt_score), calculate objectness loss # Get obj_mask by tobj(holds gt_score), calculate objectness loss
max_iou = fluid.layers.reduce_max(iou, dim=-1) max_iou = fluid.layers.reduce_max(iou, dim=-1)
...@@ -334,7 +368,6 @@ class YOLOv3Loss(object): ...@@ -334,7 +368,6 @@ class YOLOv3Loss(object):
iou_mask = iou_mask * fluid.layers.cast( iou_mask = iou_mask * fluid.layers.cast(
max_prob <= 0.25, dtype="float32") max_prob <= 0.25, dtype="float32")
output_shape = fluid.layers.shape(output) output_shape = fluid.layers.shape(output)
an_num = len(anchors) // 2
iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2], iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2],
output_shape[3])) output_shape[3]))
iou_mask.stop_gradient = True iou_mask.stop_gradient = True
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册