提交 0eba01c0 编写于 作者: Y Yu Yang

Merge branch 'feature/tester' into feature/recommendation_v2_api

......@@ -57,7 +57,7 @@ before_install:
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker 'scikit-learn>=0.18.0' 'scipy>=0.18.0'
script:
- paddle/scripts/travis/main.sh
notifications:
......
import numpy
import paddle.v2 as paddle
import mnist_util
def train_reader():
train_file = './data/raw_data/train'
generator = mnist_util.read_from_mnist(train_file)
for item in generator:
yield item
def main():
paddle.init(use_gpu=False, trainer_count=1)
......@@ -30,27 +21,29 @@ def main():
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)
trainer = paddle.trainer.SGD(topology=cost,
parameters=parameters,
update_equation=adam_optimizer)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if event.batch_id % 1000 == 0:
result = trainer.test(reader=paddle.reader.batched(
paddle.dataset.mnist.test_creator(), batch_size=256))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
else:
pass
trainer = paddle.trainer.SGD(update_equation=adam_optimizer)
trainer.train(train_data_reader=train_reader,
topology=cost,
parameters=parameters,
event_handler=event_handler,
batch_size=32, # batch size should be refactor in Data reader
data_types=[ # data_types will be removed, It should be in
# network topology
('pixel', images.type),
('label', label.type)],
reader_dict={'pixel':0, 'label':1}
)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
paddle.dataset.mnist.train_creator(), buf_size=8192),
batch_size=32),
event_handler=event_handler)
if __name__ == '__main__':
......
......@@ -4,7 +4,7 @@ set(OUTPUT_DIR
file(GLOB TRAINER_PY_FILES . ./paddle/trainer/*.py)
file(GLOB HELPERS_PY_FILES . ./paddle/trainer_config_helpers/*.py)
file(GLOB UTILS_PY_FILES . ./paddle/utils/*.py)
file(GLOB V2_PY_FILES . ./paddle/v2/*.py)
file(GLOB_RECURSE V2_PY_FILES ./paddle/v2/ *.py)
set(PY_FILES paddle/__init__.py
${TRAINER_PY_FILES}
......@@ -24,7 +24,7 @@ add_custom_target(paddle_python ALL DEPENDS
${OUTPUT_DIR}/.timestamp)
add_subdirectory(paddle/trainer_config_helpers/tests)
add_subdirectory(paddle/reader/tests)
add_subdirectory(paddle/v2/reader/tests)
add_subdirectory(paddle/v2/tests)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
......
add_test(NAME reader_decorator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/decorator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME reader_creator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/creator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
......@@ -19,13 +19,15 @@ import trainer
import event
import data_type
import data_feeder
from . import dataset
from . import reader
import attr
import pooling
import py_paddle.swig_paddle as api
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder'
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader'
]
......
......@@ -11,7 +11,10 @@ There are:
TODO(yuyang18): Complete it!
"""
import py_paddle.swig_paddle as api
__all__ = ['EndIteration', 'BeginIteration', 'BeginPass', 'EndPass']
__all__ = [
'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult'
]
class WithMetric(object):
......@@ -30,6 +33,11 @@ class WithMetric(object):
return retv
class TestResult(WithMetric):
def __init__(self, evaluator):
super(TestResult, self).__init__(evaluator)
class BeginPass(object):
"""
Event On One Pass Training Start.
......
......@@ -14,7 +14,7 @@
__all__ = [
'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
'ComposeNotAligned'
'ComposeNotAligned', 'batched'
]
from Queue import Queue
......@@ -191,3 +191,25 @@ def buffered(reader, size):
e = q.get()
return data_reader
def batched(reader, batch_size):
"""
Create a batched reader.
:param reader: the data reader to read from.
:param batch_size: batch_size
:return: the batched reader.
"""
def __impl__():
r = reader()
batch = []
for instance in r:
batch.append(instance)
if len(batch) == batch_size:
yield batch
batch = []
if batch:
yield batch
return __impl__
add_test(NAME reader_tests
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/reader/tests/run_tests.sh
${PYTHON_EXECUTABLE})
......@@ -11,17 +11,19 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import paddle.reader.creator
import numpy as np
import os
import paddle.v2.reader.creator
class TestNumpyArray(unittest.TestCase):
def test_numpy_array(self):
l = [[1, 2, 3], [4, 5, 6]]
x = np.array(l, np.int32)
reader = paddle.reader.creator.np_array(x)
reader = paddle.v2.reader.creator.np_array(x)
for idx, e in enumerate(reader()):
self.assertItemsEqual(e, l[idx])
......@@ -29,7 +31,7 @@ class TestNumpyArray(unittest.TestCase):
class TestTextFile(unittest.TestCase):
def test_text_file(self):
path = os.path.join(os.path.dirname(__file__), "test_data_creator.txt")
reader = paddle.reader.creator.text_file(path)
reader = paddle.v2.reader.creator.text_file(path)
for idx, e in enumerate(reader()):
self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1))
......
......@@ -11,9 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.reader
import time
import unittest
import paddle.v2.reader
def reader_creator_10(dur):
......@@ -37,7 +38,7 @@ class TestMap(unittest.TestCase):
yield "h"
yield "i"
r = paddle.reader.map_readers(tokenize, read)
r = paddle.v2.reader.map_readers(tokenize, read)
for i, e in enumerate(r()):
self.assertEqual(e, i)
......@@ -45,7 +46,7 @@ class TestMap(unittest.TestCase):
class TestBuffered(unittest.TestCase):
def test_read(self):
for size in range(20):
b = paddle.reader.buffered(reader_creator_10(0), size)
b = paddle.v2.reader.buffered(reader_creator_10(0), size)
c = 0
for i in b():
self.assertEqual(i, c)
......@@ -54,7 +55,7 @@ class TestBuffered(unittest.TestCase):
def test_buffering(self):
# read have 30ms delay.
b = paddle.reader.buffered(reader_creator_10(0.03), 10)
b = paddle.v2.reader.buffered(reader_creator_10(0.03), 10)
last_time = time.time()
for idx, i in enumerate(b()):
elapsed_time = time.time() - last_time
......@@ -68,17 +69,17 @@ class TestBuffered(unittest.TestCase):
class TestCompose(unittest.TestCase):
def test_compse(self):
reader = paddle.reader.compose(
reader = paddle.v2.reader.compose(
reader_creator_10(0), reader_creator_10(0))
for idx, e in enumerate(reader()):
self.assertEqual(e, (idx, idx))
def test_compose_not_aligned(self):
total = 0
reader = paddle.reader.compose(
paddle.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader = paddle.v2.reader.compose(
paddle.v2.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader_creator_10(0))
with self.assertRaises(paddle.reader.ComposeNotAligned):
with self.assertRaises(paddle.v2.reader.ComposeNotAligned):
for e in reader():
total += 1
# expecting 10, not 20
......@@ -86,8 +87,8 @@ class TestCompose(unittest.TestCase):
def test_compose_not_aligned_no_check(self):
total = 0
reader = paddle.reader.compose(
paddle.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader = paddle.v2.reader.compose(
paddle.v2.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader_creator_10(0),
check_alignment=False)
for e in reader():
......@@ -98,7 +99,7 @@ class TestCompose(unittest.TestCase):
class TestChain(unittest.TestCase):
def test_chain(self):
c = paddle.reader.chain(reader_creator_10(0), reader_creator_10(0))
c = paddle.v2.reader.chain(reader_creator_10(0), reader_creator_10(0))
idx = 0
for e in c():
self.assertEqual(e, idx % 10)
......@@ -111,7 +112,7 @@ class TestShuffle(unittest.TestCase):
case = [(0, True), (1, True), (10, False), (100, False)]
a = reader_creator_10(0)
for size, checkEq in case:
s = paddle.reader.shuffle(a, size)
s = paddle.v2.reader.shuffle(a, size)
total = 0
for idx, e in enumerate(s()):
if checkEq:
......
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pushd `dirname $0` > /dev/null
SCRIPTPATH=$PWD
popd > /dev/null
cd $SCRIPTPATH
$1 -m pip install ../../../../../paddle/dist/*.whl
test_list="creator_test.py decorator_test.py"
export PYTHONPATH=$PWD/../../../../../python/
for fn in $test_list
do
echo "test $fn"
$1 $fn
if [ $? -ne 0 ]; then
exit 1
fi
done
......@@ -23,24 +23,25 @@ def default_event_handler(event):
pass
def __bfs_travel_topology__(callback, *topologies):
for each_layer in topologies:
callback(each_layer)
__bfs_travel_topology__(callback,
*each_layer.__parent_layers__.values())
class ITrainer(object):
"""
The interface of Trainer. The only exposed method is `train`.
"""
def train(self,
train_data_reader,
topology,
parameters,
test_data_reader=None,
event_handler=None):
def train(self, reader, topology, parameters, event_handler=None):
"""
train method.
:param train_data_reader:
:param reader:
:param topology:
:param parameters:
:param test_data_reader:
:param event_handler:
:return:
"""
......@@ -49,83 +50,99 @@ class ITrainer(object):
class SGD(ITrainer):
def __init__(self, update_equation):
def __init__(self, topology, parameters, update_equation):
"""
Simple SGD Trainer.
:param update_equation: The optimizer object.
:type update_equation: v2_optimizer.Optimizer
"""
if not isinstance(parameters, v2_parameters.Parameters):
raise TypeError('parameters should be parameters')
if not isinstance(update_equation, v2_optimizer.Optimizer):
raise ValueError("update equation parameter must be "
raise TypeError("update equation parameter must be "
"paddle.v2.optimizer.Optimizer")
self.__optimizer__ = update_equation
self.__topology__ = topology
self.__parameters__ = parameters
self.__topology_in_proto__ = v2_layer.parse_network(topology)
data_types = dict()
def __travel__(l):
if hasattr(l, 'type'):
data_types[l.name] = l.type
if not isinstance(topology, collections.Sequence):
topology = [topology]
__bfs_travel_topology__(__travel__, *topology)
self.__data_types__ = [
(iname, data_types[iname])
for iname in self.__topology_in_proto__.input_layer_names
]
if not isinstance(self.__topology_in_proto__, ModelConfig):
raise TypeError('topology should be a model config')
def train(self,
train_data_reader,
topology,
parameters,
num_passes=1,
test_data_reader=None,
event_handler=None,
batch_size=32,
data_types=None,
reader_dict=None):
gm = api.GradientMachine.createFromConfigProto(
self.__topology_in_proto__, api.CREATE_MODE_NORMAL,
self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
self.__gradient_machine__ = gm
self.__gradient_machine__.randParameters()
def train(self, reader, num_passes=1, event_handler=None, reader_dict=None):
"""
Training method. Will train num_passes of input data.
:param train_data_reader:
:param reader:
:param topology: Network Topology, use one or more Layers to represent it.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param test_data_reader:
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param batch_size: Not important, will be removed after data refactor.
:param data_types: Not important, will be removed after data refactor.
:return:
"""
if event_handler is None:
event_handler = default_event_handler
topology = v2_layer.parse_network(topology)
if reader_dict is None:
reader_dict = self.default_reader_dict()
__check_train_args__(**locals())
gm = api.GradientMachine.createFromConfigProto(
topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
gm.randParameters()
updater = self.__optimizer__.create_local_updater()
updater.init(gm)
updater.init(self.__gradient_machine__)
gm.start()
batch_evaluator = gm.makeEvaluator()
self.__gradient_machine__.start()
batch_evaluator = self.__gradient_machine__.makeEvaluator()
assert isinstance(batch_evaluator, api.Evaluator)
pass_evaluator = gm.makeEvaluator()
pass_evaluator = self.__gradient_machine__.makeEvaluator()
assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0)
feeder = DataFeeder(data_types, reader_dict)
feeder = DataFeeder(self.__data_types__, reader_dict)
for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id))
pass_evaluator.start()
updater.startPass()
for batch_id, data_batch in enumerate(
__data_reader_to_batch__(train_data_reader, batch_size,
topology)):
for batch_id, data_batch in enumerate(reader()):
pass_type = updater.startBatch(len(data_batch))
self.__gradient_machine__.forwardBackward(
feeder(data_batch), out_args, pass_type)
batch_evaluator.start()
event_handler(
v2_event.BeginIteration(
pass_id=pass_id, batch_id=batch_id))
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(feeder(data_batch), out_args, pass_type)
gm.eval(pass_evaluator)
gm.eval(batch_evaluator)
for each_param in gm.getParameters():
self.__gradient_machine__.forwardBackward(
feeder(data_batch), out_args, pass_type)
self.__gradient_machine__.eval(pass_evaluator)
self.__gradient_machine__.eval(batch_evaluator)
for each_param in self.__gradient_machine__.getParameters():
updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec = out_args.getSlotValue(0)
......@@ -143,59 +160,38 @@ class SGD(ITrainer):
updater.finishPass()
pass_evaluator.finish()
event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
gm.finish()
self.__gradient_machine__.finish()
def default_reader_dict(self):
reader_dict = dict()
for i, tp in enumerate(self.__data_types__):
reader_dict[tp[0]] = i
return reader_dict
def __data_reader_to_batch__(reader, batch_size, topology):
"""
This function is not important, and will be removed when data refactored.
"""
def test(self, reader, reader_dict=None):
if reader_dict is None:
reader_dict = self.default_reader_dict()
def input_reorder(func):
for item in func():
retv = []
for __layer_name__ in topology.input_layer_names:
retv.append(item[__layer_name__])
yield retv
feeder = DataFeeder(self.__data_types__, reader_dict)
evaluator = self.__gradient_machine__.makeEvaluator()
out_args = api.Arguments.createArguments(0)
evaluator.start()
for data_batch in reader():
self.__gradient_machine__.forward(
feeder(data_batch), out_args, api.PASS_TEST)
self.__gradient_machine__.eval(evaluator)
return __generator_to_batch__(input_reorder(reader), batch_size=batch_size)
evaluator.finish()
return v2_event.TestResult(evaluator=evaluator)
def __generator_to_batch__(generator, batch_size):
"""
This function is not important, and will be removed when data refactored.
"""
ret_val = list()
for each_item in generator:
ret_val.append(each_item)
if len(ret_val) == batch_size:
yield ret_val
ret_val = list()
if len(ret_val) != 0:
yield ret_val
def __check_train_args__(train_data_reader, topology, parameters,
test_data_reader, event_handler, **kwargs):
def __check_train_args__(reader, event_handler, **kwargs):
"""
Check train function's argument types
"""
if not callable(train_data_reader) or not isinstance(train_data_reader(),
collections.Iterator):
raise ValueError('train_data_reader should be a function, '
if not callable(reader) or not isinstance(reader(), collections.Iterator):
raise TypeError('train_data_reader should be a function, '
'which can return a iterator')
if test_data_reader is not None:
if not callable(test_data_reader) or not isinstance(
test_data_reader(), collections.Iterator):
raise ValueError('test_data_reader should be a function, which can '
'return a iterator')
if not isinstance(topology, ModelConfig):
raise ValueError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
raise ValueError('parameters should be a parameter pool')
if not callable(event_handler):
raise ValueError('event handler should be a function')
raise TypeError('event handler should be a function')
......@@ -5,7 +5,9 @@ packages=['paddle',
'paddle.trainer',
'paddle.trainer_config_helpers',
'paddle.utils',
'paddle.v2']
'paddle.v2',
'paddle.v2.dataset',
'paddle.v2.reader']
setup(name='paddle',
version='${PADDLE_VERSION}',
......@@ -13,5 +15,9 @@ setup(name='paddle',
packages=packages,
package_dir={
'': '${CMAKE_CURRENT_SOURCE_DIR}'
}
},
install_requires = [
'scikit-learn>=0.18.0',
'scipy>=0.18.0',
]
)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册