未验证 提交 0dac4bcf 编写于 作者: G Guanghua Yu 提交者: GitHub

fix contrib link error in release 0.2 (#649)

* fix windows python path (#480)

* fix link error

* fix contrib_link
上级 9408c43b
...@@ -95,8 +95,8 @@ PaddleDetection的目的是为工业界和学术界提供丰富、易用的目 ...@@ -95,8 +95,8 @@ PaddleDetection的目的是为工业界和学术界提供丰富、易用的目
## 模型库 ## 模型库
- [模型库](docs/MODEL_ZOO_cn.md) - [模型库](docs/MODEL_ZOO_cn.md)
- [人脸检测模型](configs/face_detection/README.md) 开源BlazeFace系列模型,Wider-Face数据集上最高精度达到91.5%,同时具备了较高的预测性能 - [人脸检测模型](docs/featured_model/FACE_DETECTION.md) 开源BlazeFace系列模型,Wider-Face数据集上最高精度达到91.5%,同时具备了较高的预测性能
- [行人检测和车辆检测预训练模型](contrib/README_cn.md) 针对不同场景的检测模型 - [行人检测和车辆检测预训练模型](docs/featured_model/CONTRIB_cn.md) 针对不同场景的检测模型
- [YOLOv3增强模型](docs/featured_model/YOLOv3_ENHANCEMENT.md) 改进原始YOLOv3,精度达到43.2%,原论文精度为33.0%,同时预测速度也得到提升 - [YOLOv3增强模型](docs/featured_model/YOLOv3_ENHANCEMENT.md) 改进原始YOLOv3,精度达到43.2%,原论文精度为33.0%,同时预测速度也得到提升
- [Objects365 2019 Challenge夺冠模型](docs/featured_model/CACascadeRCNN.md) Objects365 Full Track任务中最好的单模型之一,精度达到31.7% - [Objects365 2019 Challenge夺冠模型](docs/featured_model/CACascadeRCNN.md) Objects365 Full Track任务中最好的单模型之一,精度达到31.7%
- [Open Images V5和Objects365数据集模型](docs/featured_model/OIDV5_BASELINE_MODEL.md) - [Open Images V5和Objects365数据集模型](docs/featured_model/OIDV5_BASELINE_MODEL.md)
......
...@@ -106,8 +106,8 @@ Advanced Features: ...@@ -106,8 +106,8 @@ Advanced Features:
## Model Zoo ## Model Zoo
- Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md). - Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Face detection models](configs/face_detection/README.md) BlazeFace series model with the highest precision of 91.5% on Wider-Face dataset and outstanding inference performance. - [Face detection models](docs/featured_model/FACE_DETECTION_en.md) BlazeFace series model with the highest precision of 91.5% on Wider-Face dataset and outstanding inference performance.
- [Pretrained models for pedestrian and vehicle detection](contrib/README.md) Models for object detection in specific scenarios. - [Pretrained models for pedestrian and vehicle detection](docs/featured_model/CONTRIB.md) Models for object detection in specific scenarios.
- [YOLOv3 enhanced model](docs/YOLOv3_ENHANCEMENT.md) Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.2% and inference speed is improved as well - [YOLOv3 enhanced model](docs/YOLOv3_ENHANCEMENT.md) Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.2% and inference speed is improved as well
- [Objects365 2019 Challenge champion model](docs/CACascadeRCNN.md) One of the best single models in Objects365 Full Track of which MAP reaches 31.7%. - [Objects365 2019 Challenge champion model](docs/CACascadeRCNN.md) One of the best single models in Objects365 Full Track of which MAP reaches 31.7%.
- [Open Images Dataset V5 and Objects365 Dataset models](docs/OIDV5_BASELINE_MODEL.md) - [Open Images Dataset V5 and Objects365 Dataset models](docs/OIDV5_BASELINE_MODEL.md)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册