未验证 提交 0d9d25d4 编写于 作者: J Jiabin Yang 提交者: GitHub

Feature/refactor layers to Layers (#16337)

* test=develop, add some Layers and tests

* test=develop, add more layers

* test=develop, add more layers

* test=develop, add force cpu option

* Update test_layers.py

remove pdb

* test=develop, refine code
上级 850b7371
......@@ -33,7 +33,7 @@ class LookupTableOp : public framework::OperatorWithKernel {
auto table_dims = ctx->GetInputDim("W");
auto ids_dims = ctx->GetInputDim("Ids");
int ids_rank = ids_dims.size();
VLOG(5) << "ids rank is " << ids_rank << std::endl;
PADDLE_ENFORCE_EQ(table_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
"The last dimension of the 'Ids' tensor must be 1.");
......
......@@ -42,7 +42,11 @@ class LayerTest(unittest.TestCase):
def tearDownClass(cls):
pass
def _get_place(self):
def _get_place(self, force_to_use_cpu=False):
# this option for ops that only have cpu kernel
if force_to_use_cpu:
return core.CPUPlace()
else:
if core.is_compiled_with_cuda():
return core.CUDAPlace(0)
return core.CPUPlace()
......@@ -54,16 +58,18 @@ class LayerTest(unittest.TestCase):
fluid.default_main_program().random_seed = self.seed
yield
def get_static_graph_result(self, feed, fetch_list):
def get_static_graph_result(self, feed, fetch_list, with_lod=False):
exe = fluid.Executor(self._get_place())
exe.run(fluid.default_startup_program())
return exe.run(fluid.default_main_program(),
feed=feed,
fetch_list=fetch_list)
fetch_list=fetch_list,
return_numpy=(not with_lod))
@contextlib.contextmanager
def dynamic_graph(self):
with fluid.imperative.guard(self._get_place()):
def dynamic_graph(self, force_to_use_cpu=False):
with fluid.imperative.guard(
self._get_place(force_to_use_cpu=force_to_use_cpu)):
fluid.default_startup_program().random_seed = self.seed
fluid.default_main_program().random_seed = self.seed
yield
......@@ -256,6 +262,304 @@ class TestLayer(LayerTest):
self.assertTrue(np.allclose(n, min_ret._numpy()))
self.assertTrue(np.allclose(n2, max_ret._numpy()))
def test_sequence_conv(self):
inp_np = np.arange(12).reshape([3, 4]).astype('float32')
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
with self.static_graph():
seq = layers.data(
name='seq_in',
shape=[3, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
out = layers.sequence_conv(seq, 2)
static_rlt = self.get_static_graph_result(
feed={
"seq_in": fluid.create_lod_tensor(
data=inp_np,
recursive_seq_lens=[[1, 1, 1]],
place=place)
},
fetch_list=[out],
with_lod=True)[0]
with self.static_graph():
seq = layers.data(
name='seq_in',
shape=[3, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
seq_conv = nn.SequenceConv('seq_conv', num_filters=2)
out = seq_conv(seq)
static_rlt2 = self.get_static_graph_result(
feed={
"seq_in": fluid.create_lod_tensor(
data=inp_np,
recursive_seq_lens=[[1, 1, 1]],
place=place)
},
fetch_list=[out],
with_lod=True)[0]
self.assertTrue(
np.allclose(np.array(static_rlt), np.array(static_rlt2)))
def test_conv2d_transpose(self):
inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
with self.static_graph():
img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
out = layers.conv2d_transpose(
input=img, num_filters=10, output_size=28)
static_rlt = self.get_static_graph_result(
feed={'pixel': inp_np}, fetch_list=[out])[0]
with self.static_graph():
img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
conv2d_transpose = nn.Conv2DTranspose(
'conv2d_transpose', num_filters=10, output_size=28)
out = conv2d_transpose(img)
static_rlt2 = self.get_static_graph_result(
feed={'pixel': inp_np}, fetch_list=[out])[0]
with self.dynamic_graph():
conv2d_transpose = nn.Conv2DTranspose(
'conv2d_transpose', num_filters=10, output_size=28)
dy_rlt = conv2d_transpose(base.to_variable(inp_np))
self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))
def test_bilinear_tensor_product(self):
inp_np_x = np.array([[1, 2, 3]]).astype('float32')
inp_np_y = np.array([[4, 5, 6]]).astype('float32')
with self.static_graph():
data_x = layers.data(
name='x',
shape=[1, 3],
dtype="float32",
append_batch_size=False)
data_y = layers.data(
name='y',
shape=[1, 3],
dtype="float32",
append_batch_size=False)
out = layers.bilinear_tensor_product(data_x, data_y, 6)
static_rlt = self.get_static_graph_result(
feed={'x': inp_np_x,
'y': inp_np_y}, fetch_list=[out])[0]
with self.static_graph():
data_x = layers.data(
name='x',
shape=[1, 3],
dtype="float32",
append_batch_size=False)
data_y = layers.data(
name='y',
shape=[1, 3],
dtype="float32",
append_batch_size=False)
btp = nn.BilinearTensorProduct('btp', 6)
out = btp(data_x, data_y)
static_rlt2 = self.get_static_graph_result(
feed={'x': inp_np_x,
'y': inp_np_y}, fetch_list=[out])[0]
with self.dynamic_graph():
btp = nn.BilinearTensorProduct('btp', 6)
dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))
def test_prelu(self):
inp_np = np.ones([5, 200, 100, 100]).astype('float32')
with self.static_graph():
data_t = layers.data(
name="input",
shape=[5, 200, 100, 100],
dtype="float32",
append_batch_size=False)
mode = 'channel'
out = layers.prelu(
data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
static_rlt = self.get_static_graph_result(
feed={"input": inp_np}, fetch_list=[out])[0]
with self.static_graph():
data_t = layers.data(
name="input",
shape=[5, 200, 100, 100],
dtype="float32",
append_batch_size=False)
mode = 'channel'
prelu = nn.PRelu(
'prelu',
mode=mode,
param_attr=ParamAttr(initializer=Constant(1.0)))
out = prelu(data_t)
static_rlt2 = self.get_static_graph_result(
feed={"input": inp_np}, fetch_list=[out])[0]
with self.dynamic_graph():
mode = 'channel'
prelu = nn.PRelu(
'prelu',
mode=mode,
param_attr=ParamAttr(initializer=Constant(1.0)))
dy_rlt = prelu(base.to_variable(inp_np))
self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))
def test_embeding(self):
inp_word = np.array([[[1]]]).astype('int64')
dict_size = 20
with self.static_graph():
data_t = layers.data(name='word', shape=[1], dtype='int64')
emb = layers.embedding(
input=data_t,
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
static_rlt = self.get_static_graph_result(
feed={'word': inp_word}, fetch_list=[emb])[0]
with self.static_graph():
data_t = layers.data(name='word', shape=[1], dtype='int64')
emb2 = nn.Embedding(
name_scope='embedding',
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
emb_rlt = emb2(data_t)
static_rlt2 = self.get_static_graph_result(
feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
with self.dynamic_graph():
emb2 = nn.Embedding(
name_scope='embedding',
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
static_rlt3 = emb2(base.to_variable(inp_word))
self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(static_rlt3._numpy(), static_rlt))
def test_nce(self):
window_size = 5
dict_size = 20
label_word = int(window_size // 2) + 1
inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
seed = 1
with self.static_graph():
words = []
for i in range(window_size):
words.append(
layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
embs = []
for i in range(window_size):
if i == label_word:
continue
emb = layers.embedding(
input=words[i],
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
embs.append(emb)
embs = layers.concat(input=embs, axis=1)
nce_loss = layers.nce(input=embs,
label=words[label_word],
num_total_classes=dict_size,
num_neg_samples=2,
sampler="custom_dist",
custom_dist=nid_freq_arr.tolist(),
seed=seed,
param_attr='nce.w',
bias_attr='nce.b')
feed_dict = dict()
for i in range(window_size):
feed_dict['word_{0}'.format(i)] = inp_word[i]
static_rlt = self.get_static_graph_result(
feed=feed_dict, fetch_list=[nce_loss])[0]
with self.static_graph():
words = []
for i in range(window_size):
words.append(
layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
emb = nn.Embedding(
'embedding',
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
embs2 = []
for i in range(window_size):
if i == label_word:
continue
emb_rlt = emb(words[i])
embs2.append(emb_rlt)
embs2 = layers.concat(input=embs2, axis=1)
nce = nn.NCE('nce',
num_total_classes=dict_size,
num_neg_samples=2,
sampler="custom_dist",
custom_dist=nid_freq_arr.tolist(),
seed=seed,
param_attr='nce.w',
bias_attr='nce.b')
nce_loss2 = nce(embs2, words[label_word])
feed_dict = dict()
for i in range(len(words)):
feed_dict['word_{0}'.format(i)] = inp_word[i]
static_rlt2 = self.get_static_graph_result(
feed=feed_dict, fetch_list=[nce_loss2])[0]
with self.dynamic_graph(force_to_use_cpu=True):
words = []
for i in range(window_size):
words.append(base.to_variable(inp_word[i]))
emb = nn.Embedding(
'embedding',
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
embs3 = []
for i in range(window_size):
if i == label_word:
continue
emb_rlt = emb(words[i])
embs3.append(emb_rlt)
embs3 = layers.concat(input=embs3, axis=1)
nce = nn.NCE('nce',
num_total_classes=dict_size,
num_neg_samples=2,
sampler="custom_dist",
custom_dist=nid_freq_arr.tolist(),
seed=seed,
param_attr='nce.w',
bias_attr='nce.b')
nce_loss3 = nce(embs3, words[label_word])
self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt))
class TestBook(unittest.TestCase):
def test_fit_a_line(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册