Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0bb0e0c1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0bb0e0c1
编写于
10月 19, 2018
作者:
D
dengkaipeng
提交者:
dengkaipeng
10月 29, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add Grid Sampler Operator for STN.
上级
79da263b
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
780 addition
and
0 deletion
+780
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
+125
-0
paddle/fluid/operators/grid_sampler_op.cc
paddle/fluid/operators/grid_sampler_op.cc
+147
-0
paddle/fluid/operators/grid_sampler_op.h
paddle/fluid/operators/grid_sampler_op.h
+311
-0
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+22
-0
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+7
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+36
-0
python/paddle/fluid/tests/unittests/test_grid_sampler_op.py
python/paddle/fluid/tests/unittests/test_grid_sampler_op.py
+121
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+10
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
0bb0e0c1
...
@@ -175,6 +175,7 @@ paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dim
...
@@ -175,6 +175,7 @@ paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dim
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
...
...
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
0 → 100644
浏览文件 @
0bb0e0c1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
ScopedTensorDescriptor
=
platform
::
ScopedTensorDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
ScopedSpatialTransformerDescriptor
=
platform
::
ScopedSpatialTransformerDescriptor
;
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
>
class
CUDNNGridSampleOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
h
=
input
->
dims
()[
2
];
int
w
=
input
->
dims
()[
3
];
const
int
size
[
4
]
=
{
n
,
c
,
h
,
w
};
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
ScopedSpatialTransformerDescriptor
st_desc
;
cudnnSpatialTransformerDescriptor_t
cudnn_st_desc
=
st_desc
.
descriptor
<
T
>
(
4
,
size
);
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
output_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
output
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerForward
(
handle
,
cudnn_st_desc
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
input_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_output_desc
,
output_data
));
}
};
template
<
typename
T
>
class
CUDNNGridSampleGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grid_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Grid"
));
auto
output_grad_dims
=
output_grad
->
dims
();
const
int
n
=
output_grad_dims
[
0
];
const
int
c
=
output_grad_dims
[
1
];
const
int
h
=
output_grad_dims
[
2
];
const
int
w
=
output_grad_dims
[
3
];
const
int
size
[
4
]
=
{
n
,
c
,
h
,
w
};
ScopedSpatialTransformerDescriptor
st_dest
;
cudnnSpatialTransformerDescriptor_t
cudnn_st_dest
=
st_dest
.
descriptor
<
T
>
(
4
,
size
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
output_grad_dims
,
ctx
.
GetPlace
());
T
*
grid_grad_data
=
grid_grad
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
input_grad_desc
;
ScopedTensorDescriptor
output_grad_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_input_grad_desc
=
input_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input_grad
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_grad_desc
=
output_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
output_grad
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerBackward
(
handle
,
cudnn_st_dest
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
input_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_input_grad_desc
,
input_grad_data
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_output_grad_desc
,
output_grad_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
grid_grad_data
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_KERNEL
(
grid_sampler
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNGridSampleOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNGridSampleOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
grid_sampler_grad
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNGridSampleGradOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNGridSampleGradOpKernel
<
double
>
);
paddle/fluid/operators/grid_sampler_op.cc
0 → 100644
浏览文件 @
0bb0e0c1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/grid_sampler_op.h"
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
GridSampleOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GridSampleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grid"
),
"Input(Grid) of GridSampleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
"Output(Output) of GridSampleOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
grid_dims
=
ctx
->
GetInputDim
(
"Grid"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
==
4
,
"Input(X) of GridSampleOp should be 4-D Tensor."
);
PADDLE_ENFORCE
(
grid_dims
.
size
()
==
4
,
"Input(Grid) of GridSampleOp should be 4-D Tensor."
);
PADDLE_ENFORCE
(
grid_dims
[
3
]
==
2
,
"Input(Grid) dims[3] should be 2."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
0
],
x_dims
[
0
],
"Input(X) and Input(Grid) dims[0] should be equal."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
1
],
x_dims
[
2
],
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
2
],
x_dims
[
3
],
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
);
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
"Output"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
library_
);
}
};
class
GridSampleOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input tensor of GridSampleOp, "
"This is a 4-D tensor with shape of [N, C, H, W]"
);
AddInput
(
"Grid"
,
"(Tensor) The output of AffineGridOp, "
"This is a 4-D tensor with shape of [N, H, W, 2]"
);
AddOutput
(
"Output"
,
"(Tensor) Output tensor with shape [N, C, H, W]"
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
It sample input X by grid gennerate by AffineGridOp.
)DOC"
);
}
};
class
GridSampleOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
//TO DO
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
library_
);
}
};
class
GridSampleGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"grid_sampler_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Grid"
,
Input
(
"Grid"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Output"
),
OutputGrad
(
"Output"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Grid"
),
InputGrad
(
"Grid"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
grid_sampler
,
ops
::
GridSampleOp
,
ops
::
GridSampleOpMaker
,
ops
::
GridSampleGradMaker
);
REGISTER_OPERATOR
(
grid_sampler_grad
,
ops
::
GridSampleOpGrad
);
REGISTER_OP_CPU_KERNEL
(
grid_sampler
,
ops
::
GridSampleOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GridSampleOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
grid_sampler_grad
,
ops
::
GridSampleGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GridSampleGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/grid_sampler_op.h
0 → 100644
浏览文件 @
0bb0e0c1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
Array3
=
Eigen
::
DSizes
<
int64_t
,
3
>
;
using
Array4
=
Eigen
::
DSizes
<
int64_t
,
4
>
;
template
<
typename
T
>
inline
bool
isInBound
(
T
x
,
T
y
,
T
x_max
,
T
y_max
)
{
if
(
x
<
0
||
x
>
x_max
||
y
<
0
||
y
>
y_max
)
{
return
false
;
}
return
true
;
}
template
<
typename
DeviceContext
,
typename
T
>
void
CalcGridLocations
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
grid
,
Tensor
*
x_w
,
Tensor
*
x_e
,
Tensor
*
y_n
,
Tensor
*
y_s
,
Tensor
*
d_w
,
Tensor
*
d_e
,
Tensor
*
d_n
,
Tensor
*
d_s
)
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
const
int
n
=
grid
.
dims
()[
0
];
const
int
h
=
grid
.
dims
()[
1
];
const
int
w
=
grid
.
dims
()[
2
];
const
T
x_max
=
static_cast
<
T
>
(
w
-
1
);
const
T
y_max
=
static_cast
<
T
>
(
h
-
1
);
// split grid with shape (n, h, w, 2) into (x, y) by the 3rd Dim
Tensor
grid_x
,
grid_y
;
T
*
grid_x_data
=
grid_x
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
T
*
grid_y_data
=
grid_y
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
const
T
*
grid_data
=
grid
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
*
h
*
w
;
i
++
)
{
grid_x_data
[
i
]
=
grid_data
[
2
*
i
];
grid_y_data
[
i
]
=
grid_data
[(
2
*
i
)
+
1
];
}
Tensor
ones
;
ones
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
auto
ones_t
=
EigenTensor
<
T
,
3
>::
From
(
ones
).
setConstant
(
1.0
);
// scale grid to [0, h-1/w-1]
auto
grid_x_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_x
);
auto
grid_y_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_y
);
grid_x_t
.
device
(
place
)
=
0.5
*
((
grid_x_t
+
ones_t
)
*
x_max
);
grid_y_t
.
device
(
place
)
=
0.5
*
((
grid_y_t
+
ones_t
)
*
y_max
);
x_w
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
x_e
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
y_n
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
y_s
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
auto
x_w_t
=
EigenTensor
<
T
,
3
>::
From
(
*
x_w
);
auto
x_e_t
=
EigenTensor
<
T
,
3
>::
From
(
*
x_e
);
auto
y_n_t
=
EigenTensor
<
T
,
3
>::
From
(
*
y_n
);
auto
y_s_t
=
EigenTensor
<
T
,
3
>::
From
(
*
y_s
);
x_w_t
.
device
(
place
)
=
grid_x_t
.
floor
();
x_e_t
.
device
(
place
)
=
x_w_t
+
ones_t
;
y_n_t
.
device
(
place
)
=
grid_y_t
.
floor
();
y_s_t
.
device
(
place
)
=
y_n_t
+
ones_t
;
d_w
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
d_e
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
d_n
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
d_s
->
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
*
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
*
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
*
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
*
d_s
);
d_w_t
.
device
(
place
)
=
grid_x_t
-
x_w_t
;
d_e_t
.
device
(
place
)
=
x_e_t
-
grid_x_t
;
d_n_t
.
device
(
place
)
=
grid_y_t
-
y_n_t
;
d_s_t
.
device
(
place
)
=
y_s_t
-
grid_y_t
;
}
template
<
typename
T
>
void
GetGridPointValue
(
const
Tensor
&
input
,
Tensor
*
output
,
const
Tensor
&
x
,
const
Tensor
&
y
)
{
const
int
n
=
input
.
dims
()[
0
];
const
int
c
=
input
.
dims
()[
1
];
const
int
h
=
input
.
dims
()[
2
];
const
int
w
=
input
.
dims
()[
3
];
auto
x_t
=
EigenTensor
<
T
,
3
>::
From
(
x
);
auto
y_t
=
EigenTensor
<
T
,
3
>::
From
(
y
);
auto
output_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output
).
setConstant
((
T
)
0
);
auto
input_t
=
EigenTensor
<
T
,
4
>::
From
(
input
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
if
(
isInBound
(
x_t
(
i
,
k
,
l
),
y_t
(
i
,
k
,
l
),
(
T
)(
w
-
1
),
(
T
)(
h
-
1
)))
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
output_t
(
i
,
j
,
k
,
l
)
=
input_t
(
i
,
j
,
(
int
)
round
(
y_t
(
i
,
k
,
l
)),
(
int
)
round
(
x_t
(
i
,
k
,
l
)));
}
}
}
}
}
}
template
<
typename
T
>
void
GatherOutputGradToInputGrad
(
const
Tensor
&
output_grad
,
Tensor
*
input_grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
d1
,
const
Tensor
&
d2
)
{
const
int
n
=
output_grad
.
dims
()[
0
];
const
int
c
=
output_grad
.
dims
()[
1
];
const
int
h
=
output_grad
.
dims
()[
2
];
const
int
w
=
output_grad
.
dims
()[
3
];
auto
x_t
=
EigenTensor
<
T
,
3
>::
From
(
x
);
auto
y_t
=
EigenTensor
<
T
,
3
>::
From
(
y
);
auto
d1_t
=
EigenTensor
<
T
,
3
>::
From
(
d1
);
auto
d2_t
=
EigenTensor
<
T
,
3
>::
From
(
d2
);
auto
input_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
input_grad
);
auto
output_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
output_grad
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
if
(
isInBound
(
x_t
(
i
,
k
,
l
),
y_t
(
i
,
k
,
l
),
(
T
)(
w
-
1
),
(
T
)(
h
-
1
)))
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
input_grad_t
(
i
,
j
,
(
int
)
y_t
(
i
,
k
,
l
),
(
int
)
x_t
(
i
,
k
,
l
))
+=
output_grad_t
(
i
,
j
,
k
,
l
)
*
d1_t
(
i
,
k
,
l
)
*
d2_t
(
i
,
k
,
l
);
}
}
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
GridSampleOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
// calc locations and distances of 4 corner points
Tensor
x_w
,
x_e
,
y_n
,
y_s
;
Tensor
d_w
,
d_e
,
d_n
,
d_s
;
CalcGridLocations
<
DeviceContext
,
T
>
(
ctx
,
*
grid
,
&
x_w
,
&
x_e
,
&
y_n
,
&
y_s
,
&
d_w
,
&
d_e
,
&
d_n
,
&
d_s
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
T
>
(
0
));
// calc 4 corner points value
Tensor
v_wn
,
v_en
,
v_ws
,
v_es
;
v_wn
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_en
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_ws
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_es
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
GetGridPointValue
<
T
>
(
*
input
,
&
v_wn
,
x_w
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_en
,
x_e
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_ws
,
x_w
,
y_s
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_es
,
x_e
,
y_s
);
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
d_s
);
auto
d_w_scaled_t
=
d_w_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_e_scaled_t
=
d_e_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_n_scaled_t
=
d_n_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_s_scaled_t
=
d_s_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
v_wn_t
=
EigenTensor
<
T
,
4
>::
From
(
v_wn
);
auto
v_en_t
=
EigenTensor
<
T
,
4
>::
From
(
v_en
);
auto
v_ws_t
=
EigenTensor
<
T
,
4
>::
From
(
v_ws
);
auto
v_es_t
=
EigenTensor
<
T
,
4
>::
From
(
v_es
);
auto
output_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output
);
//bilinear interpolaetion by 4 corner points
output_t
.
device
(
place
)
=
v_wn_t
*
d_e_scaled_t
*
d_s_scaled_t
+
v_en_t
*
d_w_scaled_t
*
d_s_scaled_t
+
v_ws_t
*
d_e_scaled_t
*
d_n_scaled_t
+
v_es_t
*
d_w_scaled_t
*
d_n_scaled_t
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GridSampleGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
input_grad
,
static_cast
<
T
>
(
0
));
auto
*
grid_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Grid"
));
grid_grad
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
grid_grad
,
static_cast
<
T
>
(
0
));
Tensor
x_w
,
x_e
,
y_n
,
y_s
;
Tensor
d_w
,
d_e
,
d_n
,
d_s
;
CalcGridLocations
<
DeviceContext
,
T
>
(
ctx
,
*
grid
,
&
x_w
,
&
x_e
,
&
y_n
,
&
y_s
,
&
d_w
,
&
d_e
,
&
d_n
,
&
d_s
);
// gather output grad value to input grad by corner point coords and weight
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_w
,
y_n
,
d_e
,
d_s
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_w
,
y_s
,
d_e
,
d_n
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_e
,
y_n
,
d_w
,
d_s
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_e
,
y_s
,
d_w
,
d_n
);
// calc 4 corner points value
Tensor
v_wn
,
v_en
,
v_ws
,
v_es
;
v_wn
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_en
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_ws
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_es
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
GetGridPointValue
<
T
>
(
*
input
,
&
v_wn
,
x_w
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_en
,
x_e
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_ws
,
x_w
,
y_s
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_es
,
x_e
,
y_s
);
auto
v_wn_t
=
EigenTensor
<
T
,
4
>::
From
(
v_wn
);
auto
v_en_t
=
EigenTensor
<
T
,
4
>::
From
(
v_en
);
auto
v_ws_t
=
EigenTensor
<
T
,
4
>::
From
(
v_ws
);
auto
v_es_t
=
EigenTensor
<
T
,
4
>::
From
(
v_es
);
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
d_s
);
auto
output_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output_grad
);
Tensor
grid_grad_x
,
grid_grad_y
;
grid_grad_x
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
grid_grad_y
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
auto
grid_grad_x_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_grad_x
).
setConstant
(
0.0
);
auto
grid_grad_y_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_grad_y
).
setConstant
(
0.0
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grid_grad_x_t
(
i
,
k
,
l
)
+=
((
v_en_t
(
i
,
j
,
k
,
l
)
-
v_wn_t
(
i
,
j
,
k
,
l
))
*
d_s_t
(
i
,
k
,
l
)
+
(
v_es_t
(
i
,
j
,
k
,
l
)
-
v_ws_t
(
i
,
j
,
k
,
l
))
*
d_n_t
(
i
,
k
,
l
))
*
output_grad_t
(
i
,
j
,
k
,
l
);
grid_grad_y_t
(
i
,
k
,
l
)
+=
((
v_ws_t
(
i
,
j
,
k
,
l
)
-
v_wn_t
(
i
,
j
,
k
,
l
))
*
d_e_t
(
i
,
k
,
l
)
+
(
v_es_t
(
i
,
j
,
k
,
l
)
-
v_en_t
(
i
,
j
,
k
,
l
))
*
d_w_t
(
i
,
k
,
l
))
*
output_grad_t
(
i
,
j
,
k
,
l
);
}
}
}
}
const
T
x_max
=
static_cast
<
T
>
(
w
-
1
);
const
T
y_max
=
static_cast
<
T
>
(
h
-
1
);
grid_grad_x_t
=
grid_grad_x_t
*
(
x_max
/
(
T
)
2
);
grid_grad_y_t
=
grid_grad_y_t
*
(
y_max
/
(
T
)
2
);
// gather grid_grad [x, y] in 3rd Dim
T
*
grid_grad_data
=
grid_grad
->
data
<
T
>
();
T
*
grid_grad_x_data
=
grid_grad_x
.
data
<
T
>
();
T
*
grid_grad_y_data
=
grid_grad_y
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
*
h
*
w
;
i
++
)
{
grid_grad_data
[
2
*
i
]
=
grid_grad_x_data
[
i
];
grid_grad_data
[
2
*
i
+
1
]
=
grid_grad_y_data
[
i
];
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
0bb0e0c1
...
@@ -341,6 +341,28 @@ class ScopedPoolingDescriptor {
...
@@ -341,6 +341,28 @@ class ScopedPoolingDescriptor {
DISABLE_COPY_AND_ASSIGN
(
ScopedPoolingDescriptor
);
DISABLE_COPY_AND_ASSIGN
(
ScopedPoolingDescriptor
);
};
};
class
ScopedSpatialTransformerDescriptor
{
public:
ScopedSpatialTransformerDescriptor
()
{
PADDLE_ENFORCE
(
dynload
::
cudnnCreateSpatialTransformerDescriptor
(
&
desc_
));
}
~
ScopedSpatialTransformerDescriptor
()
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroySpatialTransformerDescriptor
(
desc_
));
}
template
<
typename
T
>
inline
cudnnSpatialTransformerDescriptor_t
descriptor
(
const
int
nbDims
,
const
int
dimA
[])
{
PADDLE_ENFORCE
(
dynload
::
cudnnSetSpatialTransformerNdDescriptor
(
desc_
,
CUDNN_SAMPLER_BILINEAR
,
CudnnDataType
<
T
>::
type
,
nbDims
,
dimA
));
return
desc_
;
}
private:
cudnnSpatialTransformerDescriptor_t
desc_
;
DISABLE_COPY_AND_ASSIGN
(
ScopedSpatialTransformerDescriptor
);
};
inline
bool
CanCUDNNBeUsed
(
const
framework
::
ExecutionContext
&
ctx
)
{
inline
bool
CanCUDNNBeUsed
(
const
framework
::
ExecutionContext
&
ctx
)
{
bool
use_cudnn
=
ctx
.
Attr
<
bool
>
(
"use_cudnn"
);
bool
use_cudnn
=
ctx
.
Attr
<
bool
>
(
"use_cudnn"
);
use_cudnn
&=
paddle
::
platform
::
is_gpu_place
(
ctx
.
GetPlace
());
use_cudnn
&=
paddle
::
platform
::
is_gpu_place
(
ctx
.
GetPlace
());
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
0bb0e0c1
...
@@ -90,6 +90,13 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
...
@@ -90,6 +90,13 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
__macro(cudnnSetConvolutionNdDescriptor); \
__macro(cudnnSetConvolutionNdDescriptor); \
__macro(cudnnGetConvolutionNdDescriptor); \
__macro(cudnnGetConvolutionNdDescriptor); \
__macro(cudnnDeriveBNTensorDescriptor); \
__macro(cudnnDeriveBNTensorDescriptor); \
__macro(cudnnCreateSpatialTransformerDescriptor); \
__macro(cudnnSetSpatialTransformerNdDescriptor); \
__macro(cudnnDestroySpatialTransformerDescriptor);\
__macro(cudnnSpatialTfGridGeneratorForward); \
__macro(cudnnSpatialTfGridGeneratorBackward); \
__macro(cudnnSpatialTfSamplerForward); \
__macro(cudnnSpatialTfSamplerBackward); \
__macro(cudnnCreate); \
__macro(cudnnCreate); \
__macro(cudnnDestroy); \
__macro(cudnnDestroy); \
__macro(cudnnSetStream); \
__macro(cudnnSetStream); \
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
0bb0e0c1
...
@@ -157,6 +157,7 @@ __all__ = [
...
@@ -157,6 +157,7 @@ __all__ = [
'sequence_reverse'
,
'sequence_reverse'
,
'affine_channel'
,
'affine_channel'
,
'hash'
,
'hash'
,
'grid_sampler'
,
]
]
...
@@ -7580,3 +7581,38 @@ def hash(input, hash_size, num_hash=1, name=None):
...
@@ -7580,3 +7581,38 @@ def hash(input, hash_size, num_hash=1, name=None):
attrs
=
{
'num_hash'
:
num_hash
,
attrs
=
{
'num_hash'
:
num_hash
,
'mod_by'
:
hash_size
})
'mod_by'
:
hash_size
})
return
out
return
out
@
templatedoc
()
def
grid_sampler
(
x
,
grid
):
"""
It sample data from input x by the given grid, insert data of each
point by bilinear interp.
Args:
x(Variable): Input data of shape [N, H, W, C]
grid(Variable): Input grid tensor of shape [N, H, W, 2]
Returns:
out(Variable): Output data indices by grid from x of shape [N, H, W, C]
"""
helper
=
LayerHelper
(
"grid_sampler"
,
**
locals
())
if
not
isinstance
(
x
,
Variable
):
return
ValueError
(
"The x should be a Variable"
)
if
not
isinstance
(
grid
,
Variable
):
return
ValueError
(
"The grid should be a Variable"
)
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
ipts
=
{
'X'
:
x
,
'Grid'
:
grid
}
attrs
=
{}
helper
.
apppend_op
(
type
=
'grid_sampler'
,
inputs
=
ipts
,
outputs
=
{
'Output'
,
out
},
attrs
=
None
if
len
(
attrs
)
==
0
else
attrs
)
return
0
python/paddle/fluid/tests/unittests/test_grid_sampler_op.py
0 → 100644
浏览文件 @
0bb0e0c1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
AffineGrid
(
theta
,
size
):
n
=
size
[
0
]
h
=
size
[
2
]
w
=
size
[
3
]
h_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
h
)[
np
.
newaxis
,
:],
w
,
axis
=
0
).
T
[:,
:,
np
.
newaxis
]
w_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
w
)[
np
.
newaxis
,
:],
h
,
axis
=
0
)[:,
:,
np
.
newaxis
]
grid
=
np
.
concatenate
(
[
w_idx
,
h_idx
,
np
.
ones
([
h
,
w
,
1
])],
axis
=
2
)
# h * w * 3
grid
=
np
.
repeat
(
grid
[
np
.
newaxis
,
:],
size
[
0
],
axis
=
0
)
# n * h * w *3
ret
=
np
.
zeros
([
n
,
h
*
w
,
2
])
theta
=
theta
.
transpose
([
0
,
2
,
1
])
for
i
in
range
(
len
(
theta
)):
ret
[
i
]
=
np
.
dot
(
grid
[
i
].
reshape
([
h
*
w
,
3
]),
theta
[
i
])
# print ret.reshape([n, h * w, 2]).astype("float32")
return
ret
.
reshape
([
n
,
h
,
w
,
2
]).
astype
(
"float32"
)
def
getGridPointValue
(
data
,
x
,
y
):
data_shape
=
data
.
shape
N
=
data_shape
[
0
]
H
=
data_shape
[
2
]
W
=
data_shape
[
3
]
out
=
np
.
zeros
(
data_shape
,
dtype
=
'float'
)
for
i
in
range
(
N
):
for
j
in
range
(
H
):
for
k
in
range
(
W
):
if
y
[
i
,
j
,
k
]
<
0
or
y
[
i
,
j
,
k
]
>
H
-
1
or
x
[
i
,
j
,
k
]
<
0
or
x
[
i
,
j
,
k
]
>
W
-
1
:
out
[
i
,
:,
j
,
k
]
=
0
else
:
out
[
i
,
:,
j
,
k
]
=
data
[
i
,
:,
y
[
i
,
j
,
k
],
x
[
i
,
j
,
k
]]
return
out
def
GridSampler
(
data
,
grid
):
dims
=
data
.
shape
N
=
dims
[
0
]
C
=
dims
[
1
]
H
=
dims
[
2
]
W
=
dims
[
3
]
x
=
grid
[:,
:,
:,
0
]
y
=
grid
[:,
:,
:,
1
]
y_max
=
H
-
1
x_max
=
W
-
1
x
=
0.5
*
((
x
.
astype
(
'float32'
)
+
1.0
)
*
x_max
)
y
=
0.5
*
((
y
.
astype
(
'float32'
)
+
1.0
)
*
y_max
)
x0
=
np
.
floor
(
x
).
astype
(
'int32'
)
x1
=
x0
+
1
y0
=
np
.
floor
(
y
).
astype
(
'int32'
)
y1
=
y0
+
1
wa
=
np
.
tile
(((
x1
-
x
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
H
,
W
)),
(
1
,
C
,
1
,
1
))
wb
=
np
.
tile
(((
x1
-
x
)
*
(
y
-
y0
)).
reshape
((
N
,
1
,
H
,
W
)),
(
1
,
C
,
1
,
1
))
wc
=
np
.
tile
(((
x
-
x0
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
H
,
W
)),
(
1
,
C
,
1
,
1
))
wd
=
np
.
tile
(((
x
-
x0
)
*
(
y
-
y0
)).
reshape
((
N
,
1
,
H
,
W
)),
(
1
,
C
,
1
,
1
))
va
=
getGridPointValue
(
data
,
x0
,
y0
)
vb
=
getGridPointValue
(
data
,
x0
,
y1
)
vc
=
getGridPointValue
(
data
,
x1
,
y0
)
vd
=
getGridPointValue
(
data
,
x1
,
y1
)
out
=
(
wa
*
va
+
wb
*
vb
+
wc
*
vc
+
wd
*
vd
).
astype
(
'float32'
)
return
out
class
TestGridSamplerOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'grid_sampler'
x
=
np
.
random
.
randint
(
0
,
255
,
self
.
x_shape
).
astype
(
'float32'
)
theta
=
np
.
zeros
(
self
.
theta_shape
).
astype
(
'float32'
)
for
i
in
range
(
self
.
theta_shape
[
0
]):
for
j
in
range
(
2
):
for
k
in
range
(
3
):
theta
[
i
,
j
,
k
]
=
np
.
random
.
rand
(
1
)[
0
]
grid
=
AffineGrid
(
theta
,
self
.
x_shape
)
self
.
inputs
=
{
'X'
:
x
,
'Grid'
:
grid
}
self
.
attrs
=
{
'use_cudnn'
:
True
}
self
.
outputs
=
{
'Output'
:
GridSampler
(
x
,
grid
)}
# print self.outputs
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-3
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Grid'
],
'Output'
,
max_relative_error
=
0.6
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
5
,
7
,
3
)
self
.
grid_shape
=
(
2
,
7
,
3
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
0bb0e0c1
...
@@ -865,6 +865,16 @@ class TestBook(unittest.TestCase):
...
@@ -865,6 +865,16 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_affine_grid_gen
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
,
5
,
7
,
3
],
dtype
=
'float32'
)
grid
=
layers
.
data
(
name
=
'grid'
,
shape
=
[
2
,
5
,
7
,
2
],
dtype
=
'float32'
)
out
=
layers
.
grid_sampler
(
x
,
grid
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录