Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0b3d8fcd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b3d8fcd
编写于
8月 22, 2018
作者:
D
dzhwinter
提交者:
GitHub
8月 22, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature/op standard (#12860)
* new doc * standard
上级
9ee698e6
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
33 addition
and
1 deletion
+33
-1
doc/fluid/dev/new_op_cn.md
doc/fluid/dev/new_op_cn.md
+33
-1
未找到文件。
doc/fluid/dev/new_op_cn.md
浏览文件 @
0b3d8fcd
...
...
@@ -119,10 +119,29 @@ $$Out = scale*X$$
这个例子有
`AddAttr<AttrType>("scale", "...").SetDefault(1.0);`
: 增加
`scale`
系数,作为参数属性,并且设置默认值为1.0。
### 定义GradProtoMaker类
每个Op的必须有一个对应的GraProtoMaker,若未定制对应前向Op的GradProtoMaker,fluid提供了DefaultGradProtoMaker,默认注册会使用全部输入输出,包括Input, Output, Output@Grad等,使用不需要的变量的会造成显存浪费。
下面示例定义了ScaleOp的GradProtoMaker。
```
cpp
class
ScaleGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"scale"
);
grad_op
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
));
grad_op
->
SetAttr
(
"scale"
,
GetAttr
(
"scale"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
```
### 定义Operator类
下面
的点
实现了MulOp的定义:
下面实现了MulOp的定义:
```
cpp
class
MulOp
:
public
framework
::
OperatorWithKernel
{
...
...
@@ -383,6 +402,19 @@ PADDLE_ENFORCE(forward_pd != nullptr,
"Fail to find eltwise_fwd_pd in device context"); //eltwise_fwd_pd用户可能看不懂
```
3.
OP内部调用非法接口:Op内部如果出现Output = ShareDataWith(Input)
问题示例:
```
cpp
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
out
->
ShareDataWith
(
*
in
);
```
Op内部如果出现Output = ShareDataWith(Input),相当于operator图的中有一条隐藏边,连接了Input和Output,这条边无法在图分析中表达,引发基于图优化的错误。
4.
OP实现的性能实践
调用了eigen的broadcast, chop等操作,性能会比手写cuda kernel差几倍以上。此时cpu的实现可以复用eigen,gpu实现可以实现cuda kernel.
#### OP InferShape检查提示信息特别说明
-
检查输入输出变量,请统一遵循以下格式
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录