Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0a95a44b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0a95a44b
编写于
3月 17, 2018
作者:
K
Kexin Zhao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add python batch norm inference test
上级
39c676e2
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
70 addition
and
3 deletion
+70
-3
paddle/fluid/operators/batch_norm_op.cu.cc
paddle/fluid/operators/batch_norm_op.cu.cc
+2
-2
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
+68
-1
未找到文件。
paddle/fluid/operators/batch_norm_op.cu.cc
浏览文件 @
0a95a44b
...
...
@@ -125,8 +125,8 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
functor
;
functor
(
dev_ctx
,
saved_mean
,
0
);
functor
(
dev_ctx
,
saved_variance
,
0
);
functor
(
dev_ctx
,
saved_mean
,
static_cast
<
T
>
(
0
)
);
functor
(
dev_ctx
,
saved_variance
,
static_cast
<
T
>
(
0
)
);
auto
handle
=
dev_ctx
.
cudnn_handle
();
...
...
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
浏览文件 @
0a95a44b
...
...
@@ -31,6 +31,37 @@ def get_backward_op(scope, op, no_grad_set):
return
backward_op
def
_reference_testing
(
x
,
scale
,
offset
,
mean
,
var
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
if
data_format
==
"NCHW"
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
x
.
shape
[
1
],
1
,
1
))
else
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
1
,
1
,
x
.
shape
[
1
]))
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
mean_tile
=
np
.
reshape
(
mean
,
(
1
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
n
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
1
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
n
,
1
,
h
,
w
))
normalized
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
elif
data_format
==
"NHWC"
:
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
y
=
normalized
*
scale
+
offset
else
:
raise
ValueError
(
"Unknown data order."
)
if
len
(
x_shape
)
==
2
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
def
_reference_training
(
x
,
scale
,
offset
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
...
...
@@ -155,7 +186,43 @@ def set_output_grad(scope, outputs, place, feed_dict=None):
__set_tensor__
(
output
,
data
)
class
TestBatchNormOp
(
OpTest
):
class
TestBatchNormOpInference
(
OpTest
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
def
test_python
(
self
):
data_format
=
"NHWC"
epsilon
=
0.00001
n
,
h
,
w
,
c
=
2
,
3
,
4
,
5
x_shape
=
[
n
,
h
,
w
,
c
]
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
self
.
dtype
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
self
.
dtype
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
self
.
dtype
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
self
.
dtype
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
self
.
dtype
)
# run forward
y_out
=
_reference_testing
(
x_val
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
"NHWC"
)
# running N, C, H, W case
# should produce the same results
x_shape2
=
[
n
,
c
,
h
,
w
]
x_val2
=
np
.
transpose
(
x_val
,
(
0
,
3
,
1
,
2
))
y_out2
=
_reference_testing
(
x_val2
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
"NCHW"
)
# transfer (N, C, H, W) back to (N, H, W, C)
y_out2_trans
=
np
.
transpose
(
y_out2
,
(
0
,
2
,
3
,
1
))
self
.
__assert_close
(
y_out
,
y_out2_trans
,
"inference output"
)
print
'python: NHWC, NCHW, inference checking passed'
class
TestBatchNormOpTraining
(
OpTest
):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录