未验证 提交 05a96db6 编写于 作者: Y Yu Yang 提交者: GitHub

Merge branch 'develop' into feature/matmul_support_float16_double

......@@ -62,9 +62,9 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl
## Installation
It is recommended to check out the
[Docker installation guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html)
[Docker installation guide](http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/docker_install_en.html)
before looking into the
[build from source guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/build_from_source_en.html).
[build from source guide](http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/build_from_source_en.html).
## Documentation
......
......@@ -45,9 +45,9 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
ELSE()
MESSAGE(FATAL_ERROR "Should enable MKLML when build MKLDNN")
ENDIF()
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} -Wno-error=strict-overflow")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} -Wno-error=strict-overflow")
SET(MKLDNN_FLAG "-Wno-error=strict-overflow -Wno-error=unused-result -Wno-unused-result")
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}")
ExternalProject_Add(
${MKLDNN_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
......@@ -61,6 +61,7 @@ ExternalProject_Add(
CMAKE_ARGS -DMKLROOT=${MKLML_ROOT}
CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG}
CMAKE_ARGS -DWITH_TEST=OFF -DWITH_EXAMPLE=OFF
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLML_ROOT}
)
......
......@@ -27,7 +27,7 @@ ENDIF()
INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
SET(MKLML_VER "mklml_lnx_2018.0.3.20180406")
SET(MKLML_URL "http://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
......
......@@ -155,7 +155,7 @@ into offsets
3 2+3 4+5 1+9 2+10 3+12
```
so we know that the first sentence is from word 0 to word 3, and the second sentence from work 3 to word 5.
so we know that the first sentence is from word 0 to word 3, and the second sentence from word 3 to word 5.
Similarly, the lengths in the top level LoD
......
......@@ -57,7 +57,7 @@ cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor
cc_library(attribute SRCS attribute.cc DEPS framework_proto boost)
cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc
device_context)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute glog)
cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context)
......
......@@ -32,8 +32,7 @@ struct AddFunctor {
class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("input", "input1 of test op");
AddOutput("output", "output of test op");
AddAttr<bool>("use_gpu", "force to use gpu kernel").SetDefault(false);
......
......@@ -36,7 +36,7 @@ struct ComputationOpHandle : public OpHandleBase {
protected:
void RunImpl() override;
virtual bool NeedWait(VarHandleBase *in_var);
bool NeedWait(VarHandleBase *in_var) override;
private:
std::unique_ptr<OperatorBase> op_;
......
......@@ -42,7 +42,7 @@ struct FetchOpHandle : public OpHandleBase {
protected:
void RunImpl() override;
virtual void WaitInputVarGenerated(const platform::Place &place);
void WaitInputVarGenerated(const platform::Place &place) override;
private:
FeedFetchList *data_;
......
......@@ -95,7 +95,10 @@ struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
void operator()(const char* op_type, OpInfo* info) const {
info->proto_ = new proto::OpProto;
info->checker_ = new OpAttrChecker();
auto maker = T(info->proto_, info->checker_);
T maker;
maker.SetProto(info->proto_);
maker.SetChecker(info->checker_);
maker.Make();
maker.Validate();
info->proto_->set_type(op_type);
PADDLE_ENFORCE(
......
......@@ -14,56 +14,57 @@ limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
namespace framework {
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
public:
using OpProto = proto::OpProto;
using OpAttrChecker = framework::OpAttrChecker;
OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: proto_(proto), op_checker_(op_checker) {}
virtual void Make() = 0;
virtual ~OpProtoAndCheckerMaker() {
PADDLE_ENFORCE(validated_, "should call Validate after build");
CHECK(validated_) << "should call Validate after build";
}
void SetProto(proto::OpProto *proto) { proto_ = proto; }
void SetChecker(OpAttrChecker *attr_checker) { op_checker_ = attr_checker; }
void Validate();
protected:
struct VariableBuilder {
OpProto::Var* var_;
proto::OpProto::Var *var_;
VariableBuilder& AsDuplicable() {
VariableBuilder &AsDuplicable() {
var_->set_duplicable(true);
return *this;
}
VariableBuilder& AsIntermediate() {
VariableBuilder &AsIntermediate() {
var_->set_intermediate(true);
return *this;
}
VariableBuilder& AsDispensable() {
VariableBuilder &AsDispensable() {
var_->set_dispensable(true);
return *this;
}
};
VariableBuilder AddInput(const std::string& name, const std::string& comment);
VariableBuilder AddInput(const std::string &name, const std::string &comment);
VariableBuilder AddOutput(const std::string& name,
const std::string& comment);
VariableBuilder AddOutput(const std::string &name,
const std::string &comment);
template <typename T>
TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment,
TypedAttrChecker<T> &AddAttr(const std::string &name,
const std::string &comment,
bool generated = false) {
auto* attr = proto_->add_attrs();
auto *attr = proto_->add_attrs();
attr->set_name(name);
attr->set_comment(comment);
attr->set_generated(generated);
......@@ -71,21 +72,14 @@ class OpProtoAndCheckerMaker {
return op_checker_->AddAttrChecker<T>(name);
}
void AddComment(const std::string& comment) { proto_->set_comment(comment); }
void AddComment(const std::string &comment) { proto_->set_comment(comment); }
private:
void CheckNoDuplicatedInOutAttrs();
OpProto* proto_;
OpAttrChecker* op_checker_;
proto::OpProto *proto_;
OpAttrChecker *op_checker_;
bool validated_{false};
};
class NOPMaker : public OpProtoAndCheckerMaker {
public:
NOPMaker(OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {}
};
} // namespace framework
} // namespace paddle
......@@ -18,9 +18,7 @@ limitations under the License. */
class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
TestAttrProtoMaker(paddle::framework::proto::OpProto* proto,
paddle::framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddAttr<float>("scale", "scale of test op");
AddAttr<float>("scale", "scale of test op");
}
......@@ -29,15 +27,16 @@ class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
TEST(ProtoMaker, DuplicatedAttr) {
paddle::framework::proto::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker);
TestAttrProtoMaker proto_maker;
proto_maker.SetProto(&op_proto);
proto_maker.SetChecker(&op_checker);
proto_maker.Make();
ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet);
}
class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
TestInOutProtoMaker(paddle::framework::proto::OpProto* proto,
paddle::framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("input", "input of test op");
AddInput("input", "input of test op");
}
......@@ -46,6 +45,9 @@ class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
TEST(ProtoMaker, DuplicatedInOut) {
paddle::framework::proto::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker);
TestAttrProtoMaker proto_maker;
proto_maker.SetProto(&op_proto);
proto_maker.SetChecker(&op_checker);
proto_maker.Make();
ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet);
}
......@@ -33,8 +33,7 @@ class CosineOp : public OperatorBase {
class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
CosineOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("input", "input of cosine op");
AddOutput("output", "output of cosine op");
AddAttr<float>("scale", "scale of cosine op")
......@@ -55,8 +54,7 @@ class MyTestOp : public OperatorBase {
class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
MyTestOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("input", "input of cosine op").AsDuplicable();
AddOutput("output", "output of cosine op").AsIntermediate();
auto my_checker = [](int i) {
......@@ -212,10 +210,7 @@ namespace framework {
class OpKernelTestMaker : public OpProtoAndCheckerMaker {
public:
OpKernelTestMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddComment("NoGradOp, same input output. no Grad");
}
void Make() { AddComment("NoGradOp, same input output. no Grad"); }
};
class OpWithKernelTest : public OperatorWithKernel {
......@@ -275,9 +270,9 @@ TEST(OperatorRegistrar, CUDA) {
static int op_test_value = 0;
using paddle::platform::DeviceContext;
using paddle::platform::CPUDeviceContext;
using paddle::platform::CUDADeviceContext;
using paddle::platform::DeviceContext;
namespace paddle {
namespace framework {
......
......@@ -46,8 +46,7 @@ class OpWithoutKernelTest : public OperatorBase {
class OpWithoutKernelCheckerMaker : public OpProtoAndCheckerMaker {
public:
OpWithoutKernelCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("input", "input of test op");
AddOutput("output", "output of test op");
AddAttr<float>("scale", "scale of cosine op");
......@@ -98,8 +97,7 @@ namespace framework {
class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("x", "input of test op");
AddOutput("y", "output of test op");
AddAttr<float>("scale", "scale of cosine op")
......@@ -137,9 +135,7 @@ class CPUKernelTest : public OpKernel<float> {
class OpKernelTestMultiInputsProtoAndCheckerMaker
: public OpProtoAndCheckerMaker {
public:
OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("xs", "inputs of test op").AsDuplicable();
AddInput("k", "input of test op");
AddOutput("ys", "outputs of test op").AsDuplicable();
......
......@@ -24,8 +24,7 @@ namespace framework {
class SumOpMaker : public OpProtoAndCheckerMaker {
public:
SumOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddComment("");
......
......@@ -166,6 +166,8 @@ function(op_library TARGET)
# NOTE(*): activation use macro to regist the kernels, set use_op manually.
if(${TARGET} STREQUAL "activation")
file(APPEND ${pybind_file} "USE_OP(relu);\n")
elseif(${TARGET} STREQUAL "reduce")
file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n")
else()
file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
endif()
......
......@@ -63,8 +63,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AccuracyOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
// TODO(typhoonzero): support both inference value and indices.
AddInput("Out", "The network output of topk (inferences)");
AddInput("Indices", "The the network output of topk (indices)");
......
......@@ -23,8 +23,7 @@ namespace operators {
class OP_NAME##OpMaker \
: public ::paddle::framework::OpProtoAndCheckerMaker { \
public: \
OP_NAME##OpMaker(OpProto *proto, OpAttrChecker *op_checker) \
: ::paddle::framework::OpProtoAndCheckerMaker(proto, op_checker) { \
void Make() override { \
AddInput("X", "Input of " #OP_NAME "operator"); \
AddOutput("Out", "Output of" #OP_NAME "operator"); \
AddAttr<bool>("use_mkldnn", \
......@@ -204,8 +203,7 @@ $$out = \frac{x}{1 + |x|}$$
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LeakyReluOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of LeakyRelu operator");
AddOutput("Out", "Output of LeakyRelu operator");
AddAttr<float>("alpha", "The small negative slope").SetDefault(0.02f);
......@@ -220,8 +218,7 @@ $out = \max(x, \alpha * x)$
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of Softshrink operator");
AddOutput("Out", "Output of Softshrink operator");
AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
......@@ -242,8 +239,7 @@ $$
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
public:
HardShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of HardShrink operator");
AddOutput("Out", "Output of HardShrink operator");
AddAttr<float>("threshold", "The value of threshold for HardShrink")
......@@ -265,8 +261,7 @@ $$
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BReluOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of BRelu operator");
AddOutput("Out", "Output of BRelu operator");
AddAttr<float>("t_min", "The min marginal value of BRelu")
......@@ -284,8 +279,7 @@ $out = \max(\min(x, t_{min}), t_{max})$
class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftReluOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of SoftRelu operator");
AddOutput("Out", "Output of SoftRelu operator");
AddAttr<float>("threshold", "The threshold value of SoftRelu")
......@@ -301,8 +295,7 @@ $out = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ELUOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of ELU operator");
AddOutput("Out", "Output of ELU operator");
AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
......@@ -320,8 +313,7 @@ $out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
public:
Relu6OpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of Relu6 operator");
AddOutput("Out", "Output of Relu6 operator");
AddAttr<float>("threshold", "The threshold value of Relu6")
......@@ -337,8 +329,7 @@ $out = \min(\max(0, x), 6)$
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PowOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of Pow operator");
AddOutput("Out", "Output of Pow operator");
AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
......@@ -353,8 +344,7 @@ $out = x^{factor}$
class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
public:
STanhOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of STanh operator");
AddOutput("Out", "Output of STanh operator");
AddAttr<float>("scale_a", "The scale parameter of a for the input")
......@@ -372,8 +362,7 @@ $$out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ThresholdedReluOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of ThresholdedRelu operator");
AddOutput("Out", "Output of ThresholdedRelu operator");
AddAttr<float>("threshold", "The threshold location of activation")
......@@ -394,8 +383,7 @@ $$
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
HardSigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of HardSigmoid operator");
AddOutput("Out", "Output of HardSigmoid operator");
AddAttr<float>("slope", "Slope for linear approximation of sigmoid")
......@@ -420,8 +408,7 @@ It is recommended to use the defaults for this activation.
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SwishOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of Swish operator");
AddOutput("Out", "Output of Swish operator");
AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
......
......@@ -66,8 +66,7 @@ class AdadeltaOp : public framework::OperatorWithKernel {
class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdadeltaOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
......
......@@ -67,8 +67,7 @@ class AdagradOp : public framework::OperatorWithKernel {
class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdagradOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("Moment", "(Tensor) Second moment");
......
......@@ -80,8 +80,7 @@ class AdamOp : public framework::OperatorWithKernel {
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdamOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("LearningRate", "(Tensor) Learning rate");
......
......@@ -74,8 +74,7 @@ class AdamaxOp : public framework::OperatorWithKernel {
class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdamaxOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("LearningRate", "(Tensor) Learning rate");
......
......@@ -123,8 +123,7 @@ class ArrayToLoDTensorOp : public framework::OperatorBase {
class ArrayToLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ArrayToLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(std::vector<LodTensor>) A vector of tensors that is going to "
"be casted to a big LoDTensor.");
......
......@@ -94,8 +94,7 @@ class AssignOp : public framework::OperatorBase {
class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
AssignOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
"could be LoDTensor, SelectedRows or LoDTensorArray.")
......
......@@ -45,8 +45,7 @@ class AssignValueOp : public framework::OperatorWithKernel {
class AssignValueOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AssignValueOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddOutput("Out", "(Tensor) Output tensor of assign_value operator.");
AddAttr<std::vector<int>>("shape",
"(vector<int>) "
......
......@@ -50,8 +50,7 @@ class AucOp : public framework::OperatorWithKernel {
class AucOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AucOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Out",
"A floating point 2D tensor, values are in the range [0, 1]."
"Each row is sorted in descending order. This input should be the"
......
......@@ -111,8 +111,7 @@ class AverageAccumulatesOp : public framework::OperatorWithKernel {
class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AverageAccumulatesOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("param", "(Tensor), The parameter to be accumulated.");
AddInput("in_sum_1",
"(Tensor), A tensor used to store the parameter "
......
......@@ -126,8 +126,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BatchNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddAttr<bool>("is_test", "").SetDefault(false);
AddAttr<float>("momentum", "").SetDefault(0.9);
AddAttr<float>("epsilon", "")
......
......@@ -53,8 +53,7 @@ class BatchSizeLikeOp : public framework::OperatorWithKernel {
class BatchSizeLikeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BatchSizeLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() final {
AddInput("Input",
"(Tensor) Tensor "
"whose input_dim_idx'th dimension specifies the batch_size");
......@@ -68,7 +67,11 @@ class BatchSizeLikeOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<int>("output_dim_idx",
"(int, default 0) The index of output's batch size dimension")
.SetDefault(0);
Apply();
}
protected:
virtual void Apply() = 0;
};
} // namespace operators
......
......@@ -134,8 +134,7 @@ class BeamSearchDecodeOp : public framework::OperatorBase {
class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
BeamSearchDecodeOpProtoMaker(OpProto* proto, OpAttrChecker* op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Ids",
"(LodTensorArray)"
"score of the candidate words in each step");
......
......@@ -197,8 +197,7 @@ std::string ItemToString(const BeamSearch::Item &item) {
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BeamSearchOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
// inputs and outputs stored in proto
AddInput("pre_ids", "ids in previous step");
AddInput("ids", "a LoDTensor of shape of [None,k]");
......
......@@ -41,8 +41,7 @@ class BilinearInterpOp : public framework::OperatorWithKernel {
class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BilinearInterpOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor) The input tensor of bilinear interpolation, "
"This is a 4-D tensor with shape of (N x C x h x w)");
......
......@@ -65,8 +65,7 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel {
class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BilinearTensorProductOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The first input of bilinear_tensor_product operator.");
AddInput("Y", "The second input of bilinear_tensor_product operator.");
AddInput("Weight",
......
......@@ -182,8 +182,7 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BipartiteMatchOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(
"DistMat",
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
......
......@@ -60,8 +60,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BoxCoderOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(
"PriorBox",
"(Tensor, default Tensor<float>) "
......
......@@ -21,8 +21,7 @@ namespace operators {
class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
CastOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The input tensor of cast op");
AddOutput("Out", "The output tensor of cast op");
AddAttr<int>("out_dtype", "output data type");
......
......@@ -50,8 +50,7 @@ class ChannelCloseOpOpInferShape : public framework::InferShapeBase {
class ChannelCloseOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ChannelCloseOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(kChannel,
"The Channel Variable that should be closed by"
" the ChannelClose Op.");
......
......@@ -91,8 +91,7 @@ class ChannelCreateOpOpInferShape : public framework::InferShapeBase {
class ChannelCreateOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ChannelCreateOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddOutput(kOutput,
"The object of a Channel type created by ChannelCreate Op.");
AddAttr<int>("capacity", "The size of the buffer of Channel.")
......
......@@ -72,8 +72,7 @@ class ChannelRecvOp : public framework::OperatorBase {
class ChannelRecvOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ChannelRecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(Channel,
"(Channel) A variable which \"receives\" the a value sent"
"to it by a channel_send op.")
......
......@@ -57,8 +57,7 @@ class ChannelSendOp : public framework::OperatorBase {
class ChannelSendOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ChannelSendOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(Channel,
"(Channel) A variable which \"sends\" the passed in value to "
"a listening receiver.")
......
......@@ -66,8 +66,7 @@ class ChunkEvalOp : public framework::OperatorWithKernel {
class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ChunkEvalOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Inference",
"(Tensor, default: Tensor<int64_t>). "
"Predictions from the network.");
......
......@@ -37,8 +37,7 @@ class ClipByNormOp : public framework::OperatorWithKernel {
class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ClipByNormOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor) The input of clip_by_norm op."
"The number of dimensions must be between [1, 9].");
......
......@@ -38,8 +38,7 @@ class ClipOp : public framework::OperatorWithKernel {
template <typename AttrType>
class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ClipOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor)The input of clip op."
"The number of dimensions must be between [1, 9].");
......
......@@ -21,8 +21,7 @@ namespace operators {
template <typename OpComment>
class CompareOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
CompareOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
OpComment comment;
AddInput("X",
string::Sprintf("(LoDTensor) the left hand operand of %s operator",
......
......@@ -63,8 +63,7 @@ class ConcatOp : public framework::OperatorWithKernel {
class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ConcatOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input tensors of concat operator.").AsDuplicable();
AddOutput("Out", "Output tensor of concat operator.");
AddAttr<int>("axis",
......
......@@ -108,8 +108,7 @@ class ConditionalBlockOp : public ConditionalOp {
class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"The conditional variable of this operator. If X is empty, the "
"whole sub-block will not be executed.")
......
......@@ -106,8 +106,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
library);
}
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Conv2DOpMaker::Make() {
AddInput(
"Input",
"(Tensor) The input tensor of convolution operator. "
......@@ -200,8 +199,7 @@ $$
)DOC");
}
Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Conv3DOpMaker::Make() {
AddInput(
"Input",
"(Tensor) The input tensor of convolution operator. "
......
......@@ -60,12 +60,12 @@ inline bool IsExpand(const std::vector<int64_t>& filter_dim,
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker);
void Make() override;
};
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker);
void Make() override;
};
class ConvOp : public framework::OperatorWithKernel {
......
......@@ -75,8 +75,7 @@ class ConvShiftGradOp : public framework::OperatorWithKernel {
class ConvShiftOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ConvShiftOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a 2-D tensor with shape B x M, "
"where B is the batch size and M is the data dimension.");
......
......@@ -84,9 +84,7 @@ framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
layout_, library_);
}
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Conv2DTransposeOpMaker::Make() {
AddInput(
"Input",
"(Tensor) The input tensor of convolution transpose operator. "
......@@ -168,9 +166,7 @@ Example:
)DOC");
}
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Conv3DTransposeOpMaker::Make() {
AddInput("Input",
"(Tensor) The input tensor of convolution transpose operator."
"The format of input tensor is NCDHW. Where N is batch size, C is "
......
......@@ -30,12 +30,12 @@ using DDim = framework::DDim;
// operator implementations can reuse the code.
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker);
void Make() override;
};
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv3DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker);
void Make() override;
};
class ConvTransposeOp : public framework::OperatorWithKernel {
......
......@@ -62,8 +62,7 @@ class CosSimOp : public framework::OperatorWithKernel {
class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CosSimOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The 1st input of cos_sim op.");
AddInput("Y", "The 2nd input of cos_sim op.");
AddOutput("Out", "The output of cos_sim op.");
......
......@@ -18,8 +18,7 @@ namespace paddle {
namespace operators {
class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CRFDecodingOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Emission",
"(LoDTensor, default: LoDTensor<float>). A LoDTensor with shape "
"[N x D] where N is the size of the mini-batch and D is the total "
......
......@@ -52,8 +52,7 @@ class CropOp : public framework::OperatorWithKernel {
class CropOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CropOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7).");
......
......@@ -111,8 +111,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
" where N is the batch size and D is the number of classes. "
......
......@@ -44,8 +44,7 @@ class CTCAlignOp : public framework::OperatorWithKernel {
class CTCAlignOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CTCAlignOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Input",
"(LodTensor, default: LoDTensor<int>), Its shape is "
"[Lp, 1], where Lp is the sum of all input sequences' length.");
......
......@@ -29,8 +29,7 @@ class CumOp : public framework::OperatorWithKernel {
class CumsumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CumsumOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "Input of Cumsum operator");
AddOutput("Out", "Output of Cumsum operator");
AddAttr<int>("axis",
......
......@@ -62,8 +62,7 @@ class DecayedAdagradOp : public framework::OperatorWithKernel {
class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DecayedAdagradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("Moment", "(Tensor) Second moment");
......
......@@ -34,8 +34,7 @@ class DeleteVarOp : public framework::OperatorBase {
class DeleteVarOpInfoMaker : public framework::OpProtoAndCheckerMaker {
public:
DeleteVarOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The input of delete op").AsDuplicable();
AddComment(R"DOC(
Delete Operator.
......
......@@ -78,8 +78,7 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DetectionMAPOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("DetectRes",
"(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
"detections. Each row has 6 values: "
......
......@@ -37,8 +37,7 @@ class DropoutOp : public framework::OperatorWithKernel {
class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DropoutOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The input of dropout op.");
AddOutput("Out", "The output of dropout op.");
AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
......
......@@ -49,8 +49,7 @@ class EditDistanceOp : public framework::OperatorWithKernel {
class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
EditDistanceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Hyps",
"(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) "
"The indices for hypothesis strings.");
......
......@@ -14,26 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseAddOpMaker : public ElementwiseOpMaker {
public:
ElementwiseAddOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Add", "Out = X + Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_add, ops::ElementwiseOp,
ops::ElementwiseAddOpMaker, ops::ElementwiseOpInferVarType,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(elementwise_add_grad, ops::ElementwiseOpGrad);
REGISTER_ELEMWISE_OP(elementwise_add, "Add", "Out = X + Y");
REGISTER_OP_CPU_KERNEL(
elementwise_add,
ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -14,26 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_div_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
public:
ElementwiseDivOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Div", "Out = X / Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
ops::ElementwiseDivOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(elementwise_div_grad, ops::ElementwiseOpGrad);
REGISTER_ELEMWISE_OP(elementwise_div, "Div", "Out = X / Y");
REGISTER_OP_CPU_KERNEL(
elementwise_div,
ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -14,25 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_max_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMaxOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Max", "Out = max(X, Y)");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_max, ops::ElementwiseOp,
ops::ElementwiseMaxOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(elementwise_max_grad, ops::ElementwiseOpGrad);
REGISTER_ELEMWISE_OP(elementwise_max, "Max", "Out = max(X, Y)");
REGISTER_OP_CPU_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -14,25 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_min_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMinOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMinOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Max", "Out = min(X, Y)");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_min, ops::ElementwiseOp,
ops::ElementwiseMinOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(elementwise_min_grad, ops::ElementwiseOpGrad);
REGISTER_ELEMWISE_OP(elementwise_min, "Min", "Out = min(X, Y)");
REGISTER_OP_CPU_KERNEL(
elementwise_min,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -14,27 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMulOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Mul", "Out = X \\odot\\ Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseOp,
ops::ElementwiseMulOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(elementwise_mul_grad, ops::ElementwiseOpGrad);
REGISTER_ELEMWISE_OP(elementwise_mul, "Mul", "Out = X \\odot\\ Y");
REGISTER_OP_CPU_KERNEL(
elementwise_mul,
ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -54,8 +54,7 @@ class ElementwiseOpInferVarType : public framework::VarTypeInference {
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() final {
AddInput("X", "(Tensor), The first input tensor of elementwise op.");
AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
AddOutput("Out", "The output of elementwise op.");
......@@ -64,12 +63,12 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
"for broadcasting Y onto X.")
.SetDefault(-1)
.EqualGreaterThan(-1);
comment_ = R"DOC(
Limited Elementwise {name} Operator.
AddComment(string::Sprintf(R"DOC(
Limited Elementwise %s Operator.
The equation is:
$${equation}$$
$$%s$$
$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.
......@@ -100,26 +99,13 @@ For example
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
)DOC";
AddComment(comment_);
)DOC",
GetName(), GetEquation()));
}
protected:
std::string comment_;
void Replace(std::string* src, std::string from, std::string to) {
std::size_t len_from = std::strlen(from.c_str());
std::size_t len_to = std::strlen(to.c_str());
for (std::size_t pos = src->find(from); pos != std::string::npos;
pos = src->find(from, pos + len_to)) {
src->replace(pos, len_from, to);
}
}
void SetComment(std::string name, std::string equation) {
Replace(&comment_, "{name}", name);
Replace(&comment_, "{equation}", equation);
}
virtual std::string GetName() const = 0;
virtual std::string GetEquation() const = 0;
};
class ElementwiseOpGrad : public framework::OperatorWithKernel {
......@@ -152,3 +138,16 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
};
} // namespace operators
} // namespace paddle
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation) \
class __ElemwiseOp##op_type##Maker__ \
: public ::paddle::operators::ElementwiseOpMaker { \
protected: \
virtual std::string GetName() const { return op_name; } \
virtual std::string GetEquation() const { return equation; } \
}; \
REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp, \
__ElemwiseOp##op_type##Maker__, \
::paddle::operators::ElementwiseOpInferVarType, \
::paddle::framework::DefaultGradOpDescMaker<true>); \
REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
......@@ -13,17 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise_pow_op.h"
#include <string>
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwisePowOpMaker : public ElementwiseOpMaker {
public:
ElementwisePowOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Pow", "Out = X ^ Y");
AddComment(comment_);
}
protected:
std::string GetName() const override { return "Pow"; }
std::string GetEquation() const override { return "Out = X ^ Y"; }
};
} // namespace operators
} // namespace paddle
......
......@@ -14,25 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_sub_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseSubOpMaker : public ElementwiseOpMaker {
public:
ElementwiseSubOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Sub", "Out = X - Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_sub, ops::ElementwiseOp,
ops::ElementwiseSubOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(elementwise_sub_grad, ops::ElementwiseOpGrad);
REGISTER_ELEMWISE_OP(elementwise_sub, "Sub", "Out = X - Y");
REGISTER_OP_CPU_KERNEL(
elementwise_sub,
ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -56,8 +56,7 @@ class ExpandOp : public framework::OperatorWithKernel {
class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
"X is the input to be expanded.");
......
......@@ -72,8 +72,7 @@ framework::OpKernelType FCOpGrad::GetExpectedKernelType(
layout, library);
}
FCOpMaker::FCOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void FCOpMaker::Make() {
AddInput("Input", "(Tensor) The input tensor of fully connected operator. ");
AddInput("W", "(Tensor), The second input tensor of fc op.");
AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
......
......@@ -45,7 +45,7 @@ class FCOpGrad : public framework::OperatorWithKernel {
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker(OpProto* proto, OpAttrChecker* op_checker);
void Make() override;
};
} // namespace operators
......
......@@ -66,8 +66,7 @@ class FeedOp : public framework::OperatorBase {
class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker {
public:
FeedOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The input of feed op");
AddOutput("Out", "The output of feed op");
AddAttr<int>("col", "(int) The column of feed");
......
......@@ -66,8 +66,7 @@ class FetchOp : public framework::OperatorBase {
class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker {
public:
FetchOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The input of fetch op");
AddOutput("Out", "The output of fetch op");
AddAttr<int>("col", "(int) The column of fetch");
......
......@@ -30,9 +30,8 @@ class FillConstantBatchSizeLikeOp : public BatchSizeLikeOp {
};
class FillConstantBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
public:
FillConstantBatchSizeLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: BatchSizeLikeOpMaker(proto, op_checker) {
protected:
void Apply() override {
AddAttr<int>("dtype",
"(int, default 5 (FP32)) "
"Output data type")
......
......@@ -59,8 +59,7 @@ class FillConstantOp : public framework::OperatorBase {
class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FillConstantOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddAttr<int>("dtype",
"(int, default 5 (FP32)) "
"Output data type")
......
......@@ -82,8 +82,7 @@ class FillOp : public framework::OperatorBase {
class FillOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FillOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddComment(R"DOC(Fill operator
Fill an tensor with `value` and `shape`. The type of the tensor is specify by
......
......@@ -33,8 +33,7 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FillZerosLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The input of fill-zeros-like op.");
AddOutput("Out", "The variable will be filled up with zeros.");
AddComment(R"DOC(
......
......@@ -64,8 +64,7 @@ class FTRLOp : public framework::OperatorWithKernel {
class FTRLOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FTRLOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Param",
"(Tensor, default Tensor<float>) "
"Input parameter value that has to be updated.");
......
......@@ -67,8 +67,7 @@ class GatherGradOp : public framework::OperatorWithKernel {
class GatherOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GatherOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "The source input of gather op");
AddInput("Index", "The index input of gather op");
AddOutput("Out", "The output of gather op");
......
......@@ -32,9 +32,8 @@ class GaussianRandomBatchSizeLikeOp : public BatchSizeLikeOp {
};
class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
public:
GaussianRandomBatchSizeLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: BatchSizeLikeOpMaker(proto, op_checker) {
protected:
void Apply() override {
AddAttr<float>("mean",
"(float, default 0.0) "
"mean of random tensor.")
......
......@@ -70,8 +70,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GaussianRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddOutput("Out", "Output matrix of gaussian random op");
AddAttr<std::vector<int>>("shape",
......
......@@ -78,8 +78,7 @@ class GetPlacesOp : public framework::OperatorBase {
class GetPlacesOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
GetPlacesOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddOutput("Out", "vector of Place");
AddAttr<int>("device_count", "device count").SetDefault(0);
AddAttr<std::string>("device_type", "device type")
......
......@@ -89,8 +89,7 @@ class GoOp : public framework::OperatorBase {
class GoOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GoOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(kX,
"A set of variables, which are required by operators inside the "
"block of Go Op.")
......
......@@ -71,8 +71,7 @@ class GRUOp : public framework::OperatorWithKernel {
class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GRUOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Input",
"(LoDTensor) The first input is a LodTensor, which supports "
"variable-time length input sequence. The underlying tensor in "
......
......@@ -71,8 +71,7 @@ class GRUUnitOp : public framework::OperatorWithKernel {
class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GRUUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Input",
"(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
"input.");
......
......@@ -46,8 +46,7 @@ class HingeLossOp : public framework::OperatorWithKernel {
template <typename AttrType>
class HingeLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
HingeLossOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Logits",
"The input value (Logits) of Hinge loss op."
"Logits is a 2-D tensor with shape [batch_size, 1].");
......
......@@ -45,8 +45,7 @@ class HuberLossOp : public framework::OperatorWithKernel {
template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
HuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"The input value of huber loss op."
"X is a 2-D tensor with shape [batch_size, 1].");
......
......@@ -54,8 +54,7 @@ class Im2SequenceOp : public framework::OperatorWithKernel {
class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Im2SequenceOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(Tensor) The input tensor has NCHW format."
"N: batch size"
......
......@@ -47,8 +47,7 @@ class IncrementOp : public framework::OperatorWithKernel {
class IncrementOpMaker : public framework::OpProtoAndCheckerMaker {
public:
IncrementOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "(Tensor) The input tensor of increment operator");
AddOutput("Out", "(Tensor) The output tensor of increment operator.");
AddAttr<float>("step",
......
......@@ -42,8 +42,7 @@ class IOUSimilarityOp : public framework::OperatorWithKernel {
class IOUSimilarityOpMaker : public framework::OpProtoAndCheckerMaker {
public:
IOUSimilarityOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(LoDTensor, default LoDTensor<float>) "
"Box list X is a 2-D LoDTensor with shape [N, 4] holds N boxes, "
......
......@@ -48,8 +48,7 @@ class IsEmptyOp : public framework::OperatorBase {
class IsEmptyOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
IsEmptyOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput(kInput, "(Tensor) Tensor which is to be checked.");
AddOutput(kOutput, "(Tensor) a boolean Tensor that indicate empty or not.");
AddComment(R"DOC(
......
......@@ -48,8 +48,7 @@ class L1NormGradOp : public framework::OperatorWithKernel {
class L1NormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
L1NormOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "(Tensor) The input of l1_norm op.");
AddOutput("Out", "(Scalar) The output of l1_norm op.");
AddComment(R"DOC(
......
......@@ -47,8 +47,7 @@ class LabelSmoothOp : public framework::OperatorWithKernel {
class LabelSmoothOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LabelSmoothOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X",
"(LoDTensor) The input labels of LabelSmooth operator. This "
"input can be batched labels in one-hot encoding or output from "
......
......@@ -61,8 +61,7 @@ class LayerNormOp : public framework::OperatorWithKernel {
class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "(LoDTensor) The input tensor.");
AddInput("Scale",
"(Tensor, optional) Scale is a 1-dimensional tensor of size "
......
......@@ -19,8 +19,7 @@ namespace operators {
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LinearChainCRFOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("Emission",
"(LoDTensor, default LoDTensor<float>) "
"A 2-D LoDTensor with shape [N x D], where N is the size of the "
......
......@@ -343,8 +343,7 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ListenAndServOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() {
AddInput("X", "(Tensor) Variables that server recv.").AsDuplicable();
AddComment(R"DOC(
ListenAndServ operator
......
......@@ -77,8 +77,7 @@ class LoadCombineOp : public framework::OperatorBase {
class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
LoadCombineOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddOutput(
"Out",
"(vector) The output LoDTensors that will be read from the input file.")
......
......@@ -73,8 +73,7 @@ class LoadOp : public framework::OperatorBase {
class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
LoadOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddOutput("Out", "(Tensor) The tensor need to be loaded");
AddAttr<bool>(
"load_as_fp16",
......
......@@ -40,8 +40,7 @@ class LoDArrayLengthOp : public framework::OperatorBase {
class LoDArrayLengthProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
LoDArrayLengthProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
void Make() override {
AddInput("X", "(LoDTensorArray) The input tensor array.");
AddOutput("Out", "(Tensor) 1x1 CPU Tensor of length, int64_t");
AddComment(R"DOC(
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册