diff --git a/ppdet/data/data_feed.py b/ppdet/data/data_feed.py index 238b100671d289a63cec3d6c204ab09f05f08953..97f8e1fd98f46bd3baf900c9560fbdf3b1482b8c 100644 --- a/ppdet/data/data_feed.py +++ b/ppdet/data/data_feed.py @@ -28,10 +28,9 @@ from ppdet.data.transform.operators import ( DecodeImage, MixupImage, NormalizeBox, NormalizeImage, RandomDistort, RandomFlipImage, RandomInterpImage, ResizeImage, ExpandImage, CropImage, Permute) -from ppdet.data.transform.arrange_sample import (ArrangeRCNN, ArrangeTestRCNN, - ArrangeSSD, ArrangeTestSSD, - ArrangeYOLO, ArrangeEvalYOLO, - ArrangeTestYOLO) +from ppdet.data.transform.arrange_sample import ( + ArrangeRCNN, ArrangeTestRCNN, ArrangeSSD, ArrangeTestSSD, ArrangeYOLO, + ArrangeEvalYOLO, ArrangeTestYOLO) __all__ = [ 'PadBatch', 'MultiScale', 'RandomShape', 'DataSet', 'CocoDataSet', @@ -138,8 +137,8 @@ def create_reader(feed, max_iter=0, args_path=None, my_source=None): ops.append(op_dict) transform_config['OPS'] = ops - return Reader.create(feed.mode, data_config, - transform_config, max_iter, my_source) + return Reader.create(feed.mode, data_config, transform_config, max_iter, + my_source) # XXX batch transforms are only stubs for now, actually handled by `post_map` @@ -412,6 +411,7 @@ class TestFeed(DataFeed): num_workers=num_workers) +# yapf: disable @register class FasterRCNNTrainFeed(DataFeed): __doc__ = DataFeed.__doc__ @@ -422,7 +422,7 @@ class FasterRCNNTrainFeed(DataFeed): 'image', 'im_info', 'im_id', 'gt_box', 'gt_label', 'is_crowd' ], - image_shape=[3, 1333, 800], + image_shape=[3, 800, 1333], sample_transforms=[ DecodeImage(to_rgb=True), RandomFlipImage(prob=0.5), @@ -467,7 +467,7 @@ class FasterRCNNEvalFeed(DataFeed): dataset=CocoDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 1333, 800], + image_shape=[3, 800, 1333], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(mean=[0.485, 0.456, 0.406], @@ -508,7 +508,7 @@ class FasterRCNNTestFeed(DataFeed): dataset=SimpleDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 1333, 800], + image_shape=[3, 800, 1333], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(mean=[0.485, 0.456, 0.406], @@ -555,7 +555,7 @@ class MaskRCNNTrainFeed(DataFeed): 'image', 'im_info', 'im_id', 'gt_box', 'gt_label', 'is_crowd', 'gt_mask' ], - image_shape=[3, 1333, 800], + image_shape=[3, 800, 1333], sample_transforms=[ DecodeImage(to_rgb=True), RandomFlipImage(prob=0.5, is_mask_flip=True), @@ -601,7 +601,7 @@ class MaskRCNNEvalFeed(DataFeed): dataset=CocoDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 1333, 800], + image_shape=[3, 800, 1333], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(mean=[0.485, 0.456, 0.406], @@ -647,7 +647,7 @@ class MaskRCNNTestFeed(DataFeed): dataset=SimpleDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 1333, 800], + image_shape=[3, 800, 1333], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage( @@ -900,7 +900,7 @@ class YoloEvalFeed(DataFeed): def __init__(self, dataset=CocoDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, - fields=['image', 'im_size', 'im_id', 'gt_box', + fields=['image', 'im_size', 'im_id', 'gt_box', 'gt_label', 'is_difficult'], image_shape=[3, 608, 608], sample_transforms=[ @@ -985,3 +985,4 @@ class YoloTestFeed(DataFeed): use_process=use_process) self.mode = 'TEST' self.bufsize = 128 +# yapf: enable