diff --git a/configs/keypoint/README.md b/configs/keypoint/README.md
index a71d1fceec0cc84f95fd26e5d57da7b860e767d4..1dc5e9d028d5165126fe891841382be8983cd5bf 100644
--- a/configs/keypoint/README.md
+++ b/configs/keypoint/README.md
@@ -24,6 +24,7 @@
- [Bottom-Up模型独立部署](#bottom-up模型独立部署)
- [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署)
- [完整部署教程及Demo](#4完整部署教程及Demo)
+
- [自定义数据训练](#自定义数据训练)
- [BenchMark](#benchmark)
@@ -52,6 +53,33 @@ PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | 检测:640x640
关键点:384x288 | 检测mAP:49.5
关键点AP:77.8 | 检测:54.6
关键点:28.6 | 检测:115.8
关键点:17.3 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)
[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640
关键点:256x192 | 检测mAP:49.5
关键点AP:76.9 | 检测:54.6
关键点:28.6 | 检测:115.8
关键点:7.68 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)
[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
+*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
+
+
+### 服务端模型推荐
+
+| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 模型权重 |
+|:----------------------------------------------------------------------------------------------------------------------------- |:------------------------------------------ |:-------------------------:|:------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
+| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | 检测:640x640
关键点:384x288 | 检测mAP:49.5
关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)
[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
+| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640
关键点:256x192 | 检测mAP:49.5
关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)
[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
+
+## 模型库
+
+COCO数据集
+| 模型 | 方案 |输入尺寸 | AP(coco val) | 模型下载 | 配置文件 |
+| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------| ------- |
+| HigherHRNet-w32 |Bottom-Up| 512 | 67.1 | [higherhrnet_hrnet_w32_512.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512.yml) |
+| HigherHRNet-w32 | Bottom-Up| 640 | 68.3 | [higherhrnet_hrnet_w32_640.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_640.yml) |
+| HigherHRNet-w32+SWAHR |Bottom-Up| 512 | 68.9 | [higherhrnet_hrnet_w32_512_swahr.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml) |
+| HRNet-w32 | Top-Down| 256x192 | 76.9 | [hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) | [config](./hrnet/hrnet_w32_256x192.yml) |
+| HRNet-w32 |Top-Down| 384x288 | 77.8 | [hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) | [config](./hrnet/hrnet_w32_384x288.yml) |
+| HRNet-w32+DarkPose |Top-Down| 256x192 | 78.0 | [dark_hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | [config](./hrnet/dark_hrnet_w32_256x192.yml) |
+| HRNet-w32+DarkPose |Top-Down| 384x288 | 78.3 | [dark_hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | [config](./hrnet/dark_hrnet_w32_384x288.yml) |
+| WiderNaiveHRNet-18 | Top-Down|256x192 | 67.6(+DARK 68.4) | [wider_naive_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml) |
+| LiteHRNet-18 |Top-Down| 256x192 | 66.5 | [lite_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_256x192_coco.yml) |
+| LiteHRNet-18 |Top-Down| 384x288 | 69.7 | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml) |
+| LiteHRNet-30 | Top-Down|256x192 | 69.4 | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml) |
+| LiteHRNet-30 |Top-Down| 384x288 | 72.5 | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml) |
## 模型库
@@ -143,7 +171,8 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/hi
```shell
#导出检测模型
-python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
+
+python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
#导出关键点模型
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
@@ -177,6 +206,7 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
### 4、完整部署教程及Demo
+
我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。
## 自定义数据训练
diff --git a/configs/keypoint/README_en.md b/configs/keypoint/README_en.md
index 1bc4cc0ac41955ee4bf93a89f1ad3898f8ed43ab..2c1ba042d385cbd120cca3d01650b4ecc08be748 100644
--- a/configs/keypoint/README_en.md
+++ b/configs/keypoint/README_en.md
@@ -20,14 +20,17 @@
- [Deployment for Bottom-Up models](#deployment-for-bottom-up-models)
- [Joint Inference with Multi-Object Tracking Model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot)
- [Complete Deploy Instruction and Demo](#4Complete-Deploy-Instruction-and-Demo)
+
- [Train with custom data](#Train-with-custom-data)
+
- [BenchMark](#benchmark)
## Introduction
-The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users.
+The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users.
+
+Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects.
-Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects.
Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed and will not increase by the number of objects, but the accuracy will be lower.
@@ -43,6 +46,7 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README_en.m
+
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Average Inference Time (FP16) | Params (M) | Flops (G) | Model Weight | Paddle-Lite Inference Model(FP16) |
| :----------------------------------------------------------- | :------------------------------------ | :-------------------------------------: | :--------------------------------------: | :-----------------------------------: | :--------------------------------: | :--------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml) | Detection:192x192
Keypoint:128x96 | Detection mAP:29.0
Keypoint AP:58.1 | Detection:2.37ms
Keypoint:3.27ms | Detection:1.18
Keypoint:1.36 | Detection:0.35
Keypoint:0.08 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)
[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)
[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
@@ -53,6 +57,7 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README_en.m
### Terminal Server
+
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Params (M) | Flops (G) | Model Weight |
| :----------------------------------------------------------- | :----------------------------------------- | :-------------------------------------: | :--------------------------------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------------------------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | Detection:640x640
Keypoint:384x288 | Detection mAP:49.5
Keypoint AP:77.8 | Detection:54.6
Keypoint:28.6 | Detection:115.8
Keypoint:17.3 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)
[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
@@ -149,7 +154,9 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/hi
```shell
#Export Detection Model
-python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
+
+python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
+
#Export Keypoint Model
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams