Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
01d905e3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01d905e3
编写于
3月 09, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
3月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add blazeface & update rcnn modelzoo (#2303)
* add blazeface & update rcnn modelzoo * remove condition num_priors
上级
1d1c5826
变更
29
显示空白变更内容
内联
并排
Showing
29 changed file
with
1256 addition
and
36 deletion
+1256
-36
dygraph/configs/datasets/wider_face.yml
dygraph/configs/datasets/wider_face.yml
+20
-0
dygraph/configs/dcn/README.md
dygraph/configs/dcn/README.md
+3
-3
dygraph/configs/face_detection/README.md
dygraph/configs/face_detection/README.md
+96
-0
dygraph/configs/face_detection/_base_/blazeface.yml
dygraph/configs/face_detection/_base_/blazeface.yml
+40
-0
dygraph/configs/face_detection/_base_/face_reader.yml
dygraph/configs/face_detection/_base_/face_reader.yml
+45
-0
dygraph/configs/face_detection/_base_/optimizer_1000e.yml
dygraph/configs/face_detection/_base_/optimizer_1000e.yml
+21
-0
dygraph/configs/face_detection/blazeface_1000e.yml
dygraph/configs/face_detection/blazeface_1000e.yml
+9
-0
dygraph/configs/gn/README.md
dygraph/configs/gn/README.md
+3
-0
dygraph/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml
dygraph/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml
+1
-1
dygraph/configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml
dygraph/configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml
+1
-1
dygraph/configs/mask_rcnn/README.md
dygraph/configs/mask_rcnn/README.md
+1
-1
dygraph/dataset/wider_face/download_wider_face.sh
dygraph/dataset/wider_face/download_wider_face.sh
+21
-0
dygraph/docs/images/12_Group_Group_12_Group_Group_12_935.jpg
dygraph/docs/images/12_Group_Group_12_Group_Group_12_935.jpg
+0
-0
dygraph/ppdet/data/source/widerface.py
dygraph/ppdet/data/source/widerface.py
+26
-12
dygraph/ppdet/data/transform/operators.py
dygraph/ppdet/data/transform/operators.py
+19
-3
dygraph/ppdet/engine/callbacks.py
dygraph/ppdet/engine/callbacks.py
+13
-0
dygraph/ppdet/engine/trainer.py
dygraph/ppdet/engine/trainer.py
+13
-9
dygraph/ppdet/metrics/category.py
dygraph/ppdet/metrics/category.py
+14
-0
dygraph/ppdet/metrics/metrics.py
dygraph/ppdet/metrics/metrics.py
+28
-1
dygraph/ppdet/metrics/widerface_utils.py
dygraph/ppdet/metrics/widerface_utils.py
+391
-0
dygraph/ppdet/modeling/architectures/ssd.py
dygraph/ppdet/modeling/architectures/ssd.py
+14
-0
dygraph/ppdet/modeling/backbones/__init__.py
dygraph/ppdet/modeling/backbones/__init__.py
+16
-0
dygraph/ppdet/modeling/backbones/blazenet.py
dygraph/ppdet/modeling/backbones/blazenet.py
+321
-0
dygraph/ppdet/modeling/heads/__init__.py
dygraph/ppdet/modeling/heads/__init__.py
+2
-0
dygraph/ppdet/modeling/heads/face_head.py
dygraph/ppdet/modeling/heads/face_head.py
+113
-0
dygraph/ppdet/modeling/heads/ssd_head.py
dygraph/ppdet/modeling/heads/ssd_head.py
+14
-0
dygraph/ppdet/modeling/layers.py
dygraph/ppdet/modeling/layers.py
+6
-2
dygraph/ppdet/utils/checkpoint.py
dygraph/ppdet/utils/checkpoint.py
+4
-2
dygraph/tools/train.py
dygraph/tools/train.py
+1
-1
未找到文件。
dygraph/configs/datasets/wider_face.yml
0 → 100644
浏览文件 @
01d905e3
metric
:
WiderFace
num_classes
:
1
TrainDataset
:
!WIDERFaceDataSet
dataset_dir
:
dataset/wider_face
anno_path
:
wider_face_split/wider_face_train_bbx_gt.txt
image_dir
:
WIDER_train/images
data_fields
:
[
'
image'
,
'
gt_bbox'
,
'
gt_class'
]
EvalDataset
:
!WIDERFaceDataSet
dataset_dir
:
dataset/wider_face
anno_path
:
wider_face_split/wider_face_val_bbx_gt.txt
image_dir
:
WIDER_val/images
data_fields
:
[
'
image'
]
TestDataset
:
!ImageFolder
use_default_label
:
true
dygraph/configs/dcn/README.md
浏览文件 @
01d905e3
...
...
@@ -7,10 +7,10 @@
| ResNet50-vd-FPN | Faster | c3-c5 | 1 | 2x | - | 43.7 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x_coco.yml
)
|
| ResNet101-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 45.1 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r101_vd_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/faster_rcnn_dcn_r101_vd_fpn_1x_coco.yml
)
|
| ResNeXt101-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 46.5 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
)
|
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | - |
- | -
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_r50_fpn_1x_coco.yml
)
|
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | - |
- | -
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_r50_vd_fpn_2x_coco.yml
)
|
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | - |
42.7 | 38.4
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_r50_fpn_1x_coco.yml
)
|
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | - |
44.6 | 39.8
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_r50_vd_fpn_2x_coco.yml
)
|
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | - | 45.6 | 40.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r101_vd_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_r101_vd_fpn_1x_coco.yml
)
|
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | - |
- | -
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
)
|
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | - |
47.3 | 42.0
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
)
|
| ResNet50-FPN | Cascade Faster | c3-c5 | 1 | 1x | - | 42.1 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/cascade_rcnn_dcn_r50_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/cascade_rcnn_dcn_r50_fpn_1x_coco.yml
)
|
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 1 | 1x | - | 48.8 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml
)
|
...
...
dygraph/configs/face_detection/README.md
0 → 100644
浏览文件 @
01d905e3
# 人脸检测模型
## 简介
`face_detection`
中提供高效、高速的人脸检测解决方案,包括最先进的模型和经典模型。
![](
../../docs/images/12_Group_Group_12_Group_Group_12_935.jpg
)
## 模型库
#### WIDER-FACE数据集上的mAP
| 网络结构 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy/Medium/Hard Set | 预测时延(SD855)| 模型大小(MB) | 下载 | 配置文件 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | 640 | 8 | 1000e | 0.889 / 0.859 / 0.740 | - | 0.472 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/face_detection/blazeface_1000e.yml
)
|
**注意:**
-
我们使用多尺度评估策略得到
`Easy/Medium/Hard Set`
里的mAP。具体细节请参考
[
在WIDER-FACE数据集上评估
](
#在WIDER-FACE数据集上评估
)
。
## 快速开始
### 数据准备
我们使用
[
WIDER-FACE数据集
](
http://shuoyang1213.me/WIDERFACE/
)
进行训练和模型测试,官方网站提供了详细的数据介绍。
-
WIDER-Face数据源:
使用如下目录结构加载
`wider_face`
类型的数据集:
```
dataset/wider_face/
├── wider_face_split
│ ├── wider_face_train_bbx_gt.txt
│ ├── wider_face_val_bbx_gt.txt
├── WIDER_train
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_100.jpg
│ │ │ ├── 0_Parade_marchingband_1_381.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
├── WIDER_val
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_1004.jpg
│ │ │ ├── 0_Parade_marchingband_1_1045.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
```
-
手动下载数据集:
要下载WIDER-FACE数据集,请运行以下命令:
```
cd dataset/wider_face && ./download_wider_face.sh
```
### 训练与评估
训练流程与评估流程方法与其他算法一致,请参考
[
GETTING_STARTED_cn.md
](
../../docs/tutorials/GETTING_STARTED_cn.md
)
。
**注意:**
-
人脸检测模型目前不支持边训练边评估。
#### 在WIDER-FACE数据集上评估
评估并生成结果文件:
```
shell
python
-u
tools/eval.py
-c
configs/face_detection/blazeface_1000e.yml
\
-o
weights
=
output/blazeface_1000e/model_final
\
multi_scale
=
True
```
设置
`multi_scale=True`
进行多尺度评估,评估完成后,将在
`output/pred`
中生成txt格式的测试结果。
-
下载官方评估脚本来评估AP指标:
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```
-
在
`eval_tools/wider_eval.m`
中修改保存结果路径和绘制曲线的名称:
```
# Modify the folder name where the result is stored.
pred_dir = './pred';
# Modify the name of the curve to be drawn
legend_name = 'Fluid-BlazeFace';
```
-
`wider_eval.m`
是评估模块的主要执行程序。运行命令如下:
```
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```
## Citations
```
@article{bazarevsky2019blazeface,
title={BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs},
author={Valentin Bazarevsky and Yury Kartynnik and Andrey Vakunov and Karthik Raveendran and Matthias Grundmann},
year={2019},
eprint={1907.05047},
archivePrefix={arXiv},
```
dygraph/configs/face_detection/_base_/blazeface.yml
0 → 100644
浏览文件 @
01d905e3
architecture
:
SSD
SSD
:
backbone
:
BlazeNet
ssd_head
:
FaceHead
post_process
:
BBoxPostProcess
BlazeNet
:
blaze_filters
:
[[
24
,
24
],
[
24
,
24
],
[
24
,
48
,
2
],
[
48
,
48
],
[
48
,
48
]]
double_blaze_filters
:
[[
48
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
],
[
96
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
]]
FaceHead
:
in_channels
:
[
96
,
96
]
anchor_generator
:
AnchorGeneratorSSD
loss
:
SSDLoss
SSDLoss
:
overlap_threshold
:
0.35
neg_overlap
:
0.35
AnchorGeneratorSSD
:
steps
:
[
8.
,
16.
]
aspect_ratios
:
[[
1.
],
[
1.
]]
min_sizes
:
[[
16.
,
24.
],
[
32.
,
48.
,
64.
,
80.
,
96.
,
128.
]]
max_sizes
:
[[],
[]]
offset
:
0.5
flip
:
False
min_max_aspect_ratios_order
:
false
BBoxPostProcess
:
decode
:
name
:
SSDBox
nms
:
name
:
MultiClassNMS
keep_top_k
:
750
score_threshold
:
0.01
nms_threshold
:
0.3
nms_top_k
:
5000
nms_eta
:
1.0
dygraph/configs/face_detection/_base_/face_reader.yml
0 → 100644
浏览文件 @
01d905e3
worker_num
:
2
TrainReader
:
inputs_def
:
num_max_boxes
:
90
sample_transforms
:
-
Decode
:
{}
-
RandomDistort
:
{
brightness
:
[
0.5
,
1.125
,
0.875
],
random_apply
:
False
}
-
RandomExpand
:
{
fill_value
:
[
123.675
,
116.28
,
103.53
]}
-
RandomFlip
:
{}
-
CropWithDataAchorSampling
:
{
anchor_sampler
:
[[
1
,
10
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
,
0.2
,
0.0
]],
batch_sampler
:
[
[
1
,
50
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
,
1.0
,
0.0
],
[
1
,
50
,
0.3
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
,
1.0
,
0.0
],
[
1
,
50
,
0.3
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
,
1.0
,
0.0
],
[
1
,
50
,
0.3
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
,
1.0
,
0.0
],
[
1
,
50
,
0.3
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
,
1.0
,
0.0
],
],
target_size
:
640
}
-
Resize
:
{
target_size
:
[
640
,
640
],
keep_ratio
:
False
,
interp
:
1
}
-
NormalizeBox
:
{}
-
PadBox
:
{
num_max_boxes
:
90
}
batch_transforms
:
-
NormalizeImage
:
{
mean
:
[
123
,
117
,
104
],
std
:
[
127.502231
,
127.502231
,
127.502231
],
is_scale
:
false
}
-
Permute
:
{}
batch_size
:
8
shuffle
:
true
drop_last
:
true
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
NormalizeImage
:
{
mean
:
[
123
,
117
,
104
],
std
:
[
127.502231
,
127.502231
,
127.502231
],
is_scale
:
false
}
-
Permute
:
{}
batch_size
:
1
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
NormalizeImage
:
{
mean
:
[
123
,
117
,
104
],
std
:
[
127.502231
,
127.502231
,
127.502231
],
is_scale
:
false
}
-
Permute
:
{}
batch_size
:
1
dygraph/configs/face_detection/_base_/optimizer_1000e.yml
0 → 100644
浏览文件 @
01d905e3
epoch
:
1000
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
333
-
800
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.0
type
:
RMSProp
regularizer
:
factor
:
0.0005
type
:
L2
dygraph/configs/face_detection/blazeface_1000e.yml
0 → 100644
浏览文件 @
01d905e3
_BASE_
:
[
'
../datasets/wider_face.yml'
,
'
../runtime.yml'
,
'
_base_/optimizer_1000e.yml'
,
'
_base_/blazeface.yml'
,
'
_base_/face_reader.yml'
,
]
weights
:
output/blazeface_1000e/model_final
multi_scale_eval
:
True
dygraph/configs/gn/README.md
浏览文件 @
01d905e3
...
...
@@ -6,6 +6,9 @@
| :------------- | :------------- | :-----------: | :------: | :--------: |:-----: | :-----: | :----: | :----: |
| ResNet50-FPN | Faster | 1 | 2x | - | 41.9 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_gn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml
)
|
| ResNet50-FPN | Mask | 1 | 2x | - | 42.3 | 38.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_gn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml
)
|
| ResNet50-FPN | Cascade Faster | 1 | 2x | - | - | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_gn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml
)
|
| ResNet50-FPN | Cacade Mask | 1 | 2x | - | 45.0 | 39.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_gn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml
)
|
**注意:**
Faster R-CNN baseline仅使用
`2fc`
head,而此处使用
[
`4conv1fc` head
](
https://arxiv.org/abs/1803.08494
)
(4层conv之间使用GN),并且FPN也使用GN,而对于Mask R-CNN是在mask head的4层conv之间也使用GN。
...
...
dygraph/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x.yml
→
dygraph/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x
_coco
.yml
浏览文件 @
01d905e3
...
...
@@ -5,7 +5,7 @@ _BASE_: [
'
../cascade_rcnn/_base_/cascade_mask_rcnn_r50_fpn.yml'
,
'
../cascade_rcnn/_base_/cascade_mask_fpn_reader.yml'
,
]
weights
:
output/cascade_mask_rcnn_r50_fpn_gn_2x/model_final
weights
:
output/cascade_mask_rcnn_r50_fpn_gn_2x
_coco
/model_final
CascadeRCNN
:
backbone
:
ResNet
...
...
dygraph/configs/gn/cascade_rcnn_r50_fpn_gn_2x.yml
→
dygraph/configs/gn/cascade_rcnn_r50_fpn_gn_2x
_coco
.yml
浏览文件 @
01d905e3
...
...
@@ -5,7 +5,7 @@ _BASE_: [
'
../cascade_rcnn/_base_/cascade_rcnn_r50_fpn.yml'
,
'
../cascade_rcnn/_base_/cascade_fpn_reader.yml'
,
]
weights
:
output/cascade_rcnn_r50_fpn_gn_2x/model_final
weights
:
output/cascade_rcnn_r50_fpn_gn_2x
_coco
/model_final
FPN
:
out_channel
:
256
...
...
dygraph/configs/mask_rcnn/README.md
浏览文件 @
01d905e3
...
...
@@ -13,7 +13,7 @@
| ResNet101-FPN | Mask | 1 | 1x | ---- | 40.6 | 36.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.yml
)
|
| ResNet101-vd-FPN | Mask | 1 | 1x | ---- | 42.4 | 38.1 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/mask_rcnn/mask_rcnn_r101_vd_fpn_1x_coco.yml
)
|
| ResNeXt101-vd-FPN | Mask | 1 | 1x | ---- | 44.0 | 39.5 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.yml
)
|
| ResNeXt101-vd-FPN | Mask | 1 | 2x | ---- |
- | -
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
)
|
| ResNeXt101-vd-FPN | Mask | 1 | 2x | ---- |
44.6 | 39.8
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml
)
|
**注意:**
Mask R-CNN模型精度依赖Paddle develop分支修改,精度复现须使用
[
每日版本
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev
)
或2.0.1版本(将于2021.03发布),使用Paddle 2.0.0版本会有少量精度损失。
...
...
dygraph/dataset/wider_face/download_wider_face.sh
0 → 100755
浏览文件 @
01d905e3
# All rights `PaddleDetection` reserved
# References:
# @inproceedings{yang2016wider,
# Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
# Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
# Title = {WIDER FACE: A Face Detection Benchmark},
# Year = {2016}}
DIR
=
"
$(
cd
"
$(
dirname
"
$0
"
)
"
;
pwd
-P
)
"
cd
"
$DIR
"
# Download the data.
echo
"Downloading..."
wget https://dataset.bj.bcebos.com/wider_face/WIDER_train.zip
wget https://dataset.bj.bcebos.com/wider_face/WIDER_val.zip
wget https://dataset.bj.bcebos.com/wider_face/wider_face_split.zip
# Extract the data.
echo
"Extracting..."
unzip
-q
WIDER_train.zip
unzip
-q
WIDER_val.zip
unzip
-q
wider_face_split.zip
dygraph/docs/images/12_Group_Group_12_Group_Group_12_935.jpg
0 → 100644
浏览文件 @
01d905e3
490.8 KB
dygraph/ppdet/data/source/widerface.py
浏览文件 @
01d905e3
...
...
@@ -16,7 +16,7 @@ import os
import
numpy
as
np
from
ppdet.core.workspace
import
register
,
serializable
from
.dataset
import
D
ataS
et
from
.dataset
import
D
etDatas
et
from
ppdet.utils.logger
import
setup_logger
logger
=
setup_logger
(
__name__
)
...
...
@@ -24,7 +24,7 @@ logger = setup_logger(__name__)
@
register
@
serializable
class
WIDERFaceDataSet
(
D
ataS
et
):
class
WIDERFaceDataSet
(
D
etDatas
et
):
"""
Load WiderFace records with 'anno_path'
...
...
@@ -39,20 +39,23 @@ class WIDERFaceDataSet(DataSet):
dataset_dir
=
None
,
image_dir
=
None
,
anno_path
=
None
,
data_fields
=
[
'image'
],
sample_num
=-
1
,
with_lmk
=
False
):
super
(
WIDERFaceDataSet
,
self
).
__init__
(
dataset_dir
=
dataset_dir
,
image_dir
=
image_dir
,
anno_path
=
anno_path
,
data_fields
=
data_fields
,
sample_num
=
sample_num
,
dataset_dir
=
dataset_dir
)
with_lmk
=
with_lmk
)
self
.
anno_path
=
anno_path
self
.
sample_num
=
sample_num
self
.
roidbs
=
None
self
.
cname2cid
=
None
self
.
with_lmk
=
with_lmk
def
load_roidb_and_cname2cid
(
self
,
):
def
parse_dataset
(
self
):
anno_path
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
anno_path
)
image_dir
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
image_dir
)
...
...
@@ -67,7 +70,7 @@ class WIDERFaceDataSet(DataSet):
im_fname
=
item
[
0
]
im_id
=
np
.
array
([
ct
])
gt_bbox
=
np
.
zeros
((
len
(
item
)
-
1
,
4
),
dtype
=
np
.
float32
)
gt_class
=
np
.
one
s
((
len
(
item
)
-
1
,
1
),
dtype
=
np
.
int32
)
gt_class
=
np
.
zero
s
((
len
(
item
)
-
1
,
1
),
dtype
=
np
.
int32
)
gt_lmk_labels
=
np
.
zeros
((
len
(
item
)
-
1
,
10
),
dtype
=
np
.
float32
)
lmk_ignore_flag
=
np
.
zeros
((
len
(
item
)
-
1
,
1
),
dtype
=
np
.
int32
)
for
index_box
in
range
(
len
(
item
)):
...
...
@@ -82,9 +85,14 @@ class WIDERFaceDataSet(DataSet):
widerface_rec
=
{
'im_file'
:
im_fname
,
'im_id'
:
im_id
,
}
if
'image'
in
self
.
data_fields
else
{}
gt_rec
=
{
'gt_bbox'
:
gt_bbox
,
'gt_class'
:
gt_class
,
}
for
k
,
v
in
gt_rec
.
items
():
if
k
in
self
.
data_fields
:
widerface_rec
[
k
]
=
v
if
self
.
with_lmk
:
widerface_rec
[
'gt_keypoint'
]
=
gt_lmk_labels
widerface_rec
[
'keypoint_ignore'
]
=
lmk_ignore_flag
...
...
@@ -105,18 +113,24 @@ class WIDERFaceDataSet(DataSet):
file_dict
=
{}
num_class
=
0
exts
=
[
'jpg'
,
'jpeg'
,
'png'
,
'bmp'
]
exts
+=
[
ext
.
upper
()
for
ext
in
exts
]
for
i
in
range
(
len
(
lines_input_txt
)):
line_txt
=
lines_input_txt
[
i
].
strip
(
'
\n\t\r
'
)
if
'.jpg'
in
line_txt
:
split_str
=
line_txt
.
split
(
' '
)
if
len
(
split_str
)
==
1
:
img_file_name
=
os
.
path
.
split
(
split_str
[
0
])[
1
]
split_txt
=
img_file_name
.
split
(
'.'
)
if
len
(
split_txt
)
<
2
:
continue
elif
split_txt
[
-
1
]
in
exts
:
if
i
!=
0
:
num_class
+=
1
file_dict
[
num_class
]
=
[]
file_dict
[
num_class
].
append
(
line_txt
)
if
'.jpg'
not
in
line_txt
:
file_dict
[
num_class
]
=
[
line_txt
]
else
:
if
len
(
line_txt
)
<=
6
:
continue
result_boxs
=
[]
split_str
=
line_txt
.
split
(
' '
)
xmin
=
float
(
split_str
[
0
])
ymin
=
float
(
split_str
[
1
])
w
=
float
(
split_str
[
2
])
...
...
dygraph/ppdet/data/transform/operators.py
浏览文件 @
01d905e3
...
...
@@ -994,7 +994,7 @@ class CropWithDataAchorSampling(BaseOperator):
[max sample, max trial, min scale, max scale,
min aspect ratio, max aspect ratio,
min overlap, max overlap, min coverage, max coverage]
target_size (
bool
): target image size.
target_size (
int
): target image size.
das_anchor_scales (list[float]): a list of anchor scales in data
anchor smapling.
min_size (float): minimum size of sampled bbox.
...
...
@@ -1026,6 +1026,10 @@ class CropWithDataAchorSampling(BaseOperator):
gt_bbox
=
sample
[
'gt_bbox'
]
gt_class
=
sample
[
'gt_class'
]
image_height
,
image_width
=
im
.
shape
[:
2
]
gt_bbox
[:,
0
]
/=
image_width
gt_bbox
[:,
1
]
/=
image_height
gt_bbox
[:,
2
]
/=
image_width
gt_bbox
[:,
3
]
/=
image_height
gt_score
=
None
if
'gt_score'
in
sample
:
gt_score
=
sample
[
'gt_score'
]
...
...
@@ -1073,9 +1077,15 @@ class CropWithDataAchorSampling(BaseOperator):
continue
im
=
crop_image_sampling
(
im
,
sample_bbox
,
image_width
,
image_height
,
self
.
target_size
)
height
,
width
=
im
.
shape
[:
2
]
crop_bbox
[:,
0
]
*=
width
crop_bbox
[:,
1
]
*=
height
crop_bbox
[:,
2
]
*=
width
crop_bbox
[:,
3
]
*=
height
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
crop_bbox
sample
[
'gt_class'
]
=
crop_class
if
'gt_score'
in
sample
:
sample
[
'gt_score'
]
=
crop_score
if
'gt_keypoint'
in
sample
.
keys
():
sample
[
'gt_keypoint'
]
=
gt_keypoints
[
0
]
...
...
@@ -1124,9 +1134,15 @@ class CropWithDataAchorSampling(BaseOperator):
ymin
=
int
(
sample_bbox
[
1
]
*
image_height
)
ymax
=
int
(
sample_bbox
[
3
]
*
image_height
)
im
=
im
[
ymin
:
ymax
,
xmin
:
xmax
]
height
,
width
=
im
.
shape
[:
2
]
crop_bbox
[:,
0
]
*=
width
crop_bbox
[:,
1
]
*=
height
crop_bbox
[:,
2
]
*=
width
crop_bbox
[:,
3
]
*=
height
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
crop_bbox
sample
[
'gt_class'
]
=
crop_class
if
'gt_score'
in
sample
:
sample
[
'gt_score'
]
=
crop_score
if
'gt_keypoint'
in
sample
.
keys
():
sample
[
'gt_keypoint'
]
=
gt_keypoints
[
0
]
...
...
dygraph/ppdet/engine/callbacks.py
浏览文件 @
01d905e3
...
...
@@ -17,6 +17,7 @@ from __future__ import division
from
__future__
import
print_function
import
os
import
sys
import
datetime
import
paddle
...
...
@@ -169,3 +170,15 @@ class Checkpointer(Callback):
else
:
save_model
(
self
.
model
.
model
,
self
.
model
.
optimizer
,
save_dir
,
save_name
,
epoch_id
+
1
)
class
WiferFaceEval
(
Callback
):
def
__init__
(
self
,
model
):
super
(
WiferFaceEval
,
self
).
__init__
(
model
)
def
on_epoch_begin
(
self
,
status
):
assert
self
.
model
.
mode
==
'eval'
,
\
"WiferFaceEval can only be set during evaluation"
for
metric
in
self
.
model
.
_metrics
:
metric
.
update
(
self
.
model
.
model
)
sys
.
exit
()
dygraph/ppdet/engine/trainer.py
浏览文件 @
01d905e3
...
...
@@ -31,10 +31,10 @@ from paddle.static import InputSpec
from
ppdet.core.workspace
import
create
from
ppdet.utils.checkpoint
import
load_weight
,
load_pretrain_weight
from
ppdet.utils.visualizer
import
visualize_results
from
ppdet.metrics
import
Metric
,
COCOMetric
,
VOCMetric
,
get_categories
,
get_infer_results
from
ppdet.metrics
import
Metric
,
COCOMetric
,
VOCMetric
,
WiderFaceMetric
,
get_categories
,
get_infer_results
import
ppdet.utils.stats
as
stats
from
.callbacks
import
Callback
,
ComposeCallback
,
LogPrinter
,
Checkpointer
from
.callbacks
import
Callback
,
ComposeCallback
,
LogPrinter
,
Checkpointer
,
WiferFaceEval
from
.export_utils
import
_dump_infer_config
from
ppdet.utils.logger
import
setup_logger
...
...
@@ -90,8 +90,6 @@ class Trainer(object):
self
.
start_epoch
=
0
self
.
end_epoch
=
cfg
.
epoch
self
.
_weights_loaded
=
False
# initial default callbacks
self
.
_init_callbacks
()
...
...
@@ -105,6 +103,8 @@ class Trainer(object):
self
.
_compose_callback
=
ComposeCallback
(
self
.
_callbacks
)
elif
self
.
mode
==
'eval'
:
self
.
_callbacks
=
[
LogPrinter
(
self
)]
if
self
.
cfg
.
metric
==
'WiderFace'
:
self
.
_callbacks
.
append
(
WiferFaceEval
(
self
))
self
.
_compose_callback
=
ComposeCallback
(
self
.
_callbacks
)
else
:
self
.
_callbacks
=
[]
...
...
@@ -128,6 +128,15 @@ class Trainer(object):
class_num
=
self
.
cfg
.
num_classes
,
map_type
=
self
.
cfg
.
map_type
)
]
elif
self
.
cfg
.
metric
==
'WiderFace'
:
multi_scale
=
self
.
cfg
.
multi_scale_eval
if
'multi_scale_eval'
in
self
.
cfg
else
True
self
.
_metrics
=
[
WiderFaceMetric
(
image_dir
=
os
.
path
.
join
(
self
.
dataset
.
dataset_dir
,
self
.
dataset
.
image_dir
),
anno_file
=
self
.
dataset
.
get_anno
(),
multi_scale
=
multi_scale
)
]
else
:
logger
.
warn
(
"Metric not support for metric type {}"
.
format
(
self
.
cfg
.
metric
))
...
...
@@ -165,15 +174,10 @@ class Trainer(object):
weight_type
)
logger
.
debug
(
"Load {} weights {} to start training"
.
format
(
weight_type
,
weights
))
self
.
_weights_loaded
=
True
def
train
(
self
,
validate
=
False
):
assert
self
.
mode
==
'train'
,
"Model not in 'train' mode"
# if no given weights loaded, load backbone pretrain weights as default
if
not
self
.
_weights_loaded
:
self
.
load_weights
(
self
.
cfg
.
pretrain_weights
)
model
=
self
.
model
if
self
.
cfg
.
fleet
:
model
=
fleet
.
distributed_model
(
model
)
...
...
dygraph/ppdet/metrics/category.py
浏览文件 @
01d905e3
...
...
@@ -19,6 +19,7 @@ from __future__ import print_function
import
os
from
ppdet.data.source.voc
import
pascalvoc_label
from
ppdet.data.source.widerface
import
widerface_label
from
ppdet.utils.logger
import
setup_logger
logger
=
setup_logger
(
__name__
)
...
...
@@ -75,6 +76,9 @@ def get_categories(metric_type, anno_file=None):
logger
.
warn
(
"only default categories support for OID19"
)
return
_oid19_category
()
elif
metric_type
.
lower
()
==
'widerface'
:
return
_widerface_category
()
else
:
raise
ValueError
(
"unknown metric type {}"
.
format
(
metric_type
))
...
...
@@ -274,6 +278,16 @@ def _vocall_category():
return
clsid2catid
,
catid2name
def
_widerface_category
():
label_map
=
widerface_label
()
label_map
=
sorted
(
label_map
.
items
(),
key
=
lambda
x
:
x
[
1
])
cats
=
[
l
[
0
]
for
l
in
label_map
]
clsid2catid
=
{
i
:
i
for
i
in
range
(
len
(
cats
))}
catid2name
=
{
i
:
name
for
i
,
name
in
enumerate
(
cats
)}
return
clsid2catid
,
catid2name
def
_oid19_category
():
clsid2catid
=
{
k
:
k
+
1
for
k
in
range
(
500
)}
...
...
dygraph/ppdet/metrics/metrics.py
浏览文件 @
01d905e3
...
...
@@ -25,17 +25,26 @@ import numpy as np
from
.category
import
get_categories
from
.map_utils
import
prune_zero_padding
,
DetectionMAP
from
.coco_utils
import
get_infer_results
,
cocoapi_eval
from
.widerface_utils
import
face_eval_run
from
ppdet.utils.logger
import
setup_logger
logger
=
setup_logger
(
__name__
)
__all__
=
[
'Metric'
,
'COCOMetric'
,
'VOCMetric'
,
'get_infer_results'
]
__all__
=
[
'Metric'
,
'COCOMetric'
,
'VOCMetric'
,
'WiderFaceMetric'
,
'get_infer_results'
]
class
Metric
(
paddle
.
metric
.
Metric
):
def
name
(
self
):
return
self
.
__class__
.
__name__
def
reset
(
self
):
pass
def
accumulate
(
self
):
pass
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
# :metch:`reset`, in ppdet, we also need following 2 methods:
...
...
@@ -194,3 +203,21 @@ class VOCMetric(Metric):
def
get_results
(
self
):
self
.
detection_map
.
get_map
()
class
WiderFaceMetric
(
Metric
):
def
__init__
(
self
,
image_dir
,
anno_file
,
multi_scale
=
True
):
self
.
image_dir
=
image_dir
self
.
anno_file
=
anno_file
self
.
multi_scale
=
multi_scale
self
.
clsid2catid
,
self
.
catid2name
=
get_categories
(
'widerface'
)
def
update
(
self
,
model
):
face_eval_run
(
model
,
self
.
image_dir
,
self
.
anno_file
,
pred_dir
=
'output/pred'
,
eval_mode
=
'widerface'
,
multi_scale
=
self
.
multi_scale
)
dygraph/ppdet/metrics/widerface_utils.py
0 → 100644
浏览文件 @
01d905e3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
cv2
import
numpy
as
np
from
collections
import
OrderedDict
import
paddle
from
ppdet.utils.logger
import
setup_logger
logger
=
setup_logger
(
__name__
)
__all__
=
[
'face_eval_run'
,
'lmk2out'
]
def
face_eval_run
(
model
,
image_dir
,
gt_file
,
pred_dir
=
'output/pred'
,
eval_mode
=
'widerface'
,
multi_scale
=
False
):
# load ground truth files
with
open
(
gt_file
,
'r'
)
as
f
:
gt_lines
=
f
.
readlines
()
imid2path
=
[]
pos_gt
=
0
while
pos_gt
<
len
(
gt_lines
):
name_gt
=
gt_lines
[
pos_gt
].
strip
(
'
\n\t
'
).
split
()[
0
]
imid2path
.
append
(
name_gt
)
pos_gt
+=
1
n_gt
=
int
(
gt_lines
[
pos_gt
].
strip
(
'
\n\t
'
).
split
()[
0
])
pos_gt
+=
1
+
n_gt
logger
.
info
(
'The ground truth file load {} images'
.
format
(
len
(
imid2path
)))
dets_dist
=
OrderedDict
()
for
iter_id
,
im_path
in
enumerate
(
imid2path
):
image_path
=
os
.
path
.
join
(
image_dir
,
im_path
)
if
eval_mode
==
'fddb'
:
image_path
+=
'.jpg'
assert
os
.
path
.
exists
(
image_path
)
image
=
cv2
.
imread
(
image_path
)
image
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2RGB
)
if
multi_scale
:
shrink
,
max_shrink
=
get_shrink
(
image
.
shape
[
0
],
image
.
shape
[
1
])
det0
=
detect_face
(
model
,
image
,
shrink
)
det1
=
flip_test
(
model
,
image
,
shrink
)
[
det2
,
det3
]
=
multi_scale_test
(
model
,
image
,
max_shrink
)
det4
=
multi_scale_test_pyramid
(
model
,
image
,
max_shrink
)
det
=
np
.
row_stack
((
det0
,
det1
,
det2
,
det3
,
det4
))
dets
=
bbox_vote
(
det
)
else
:
dets
=
detect_face
(
model
,
image
,
1
)
if
eval_mode
==
'widerface'
:
save_widerface_bboxes
(
image_path
,
dets
,
pred_dir
)
else
:
dets_dist
[
im_path
]
=
dets
if
iter_id
%
100
==
0
:
logger
.
info
(
'Test iter {}'
.
format
(
iter_id
))
if
eval_mode
==
'fddb'
:
save_fddb_bboxes
(
dets_dist
,
pred_dir
)
logger
.
info
(
"Finish evaluation."
)
def
detect_face
(
model
,
image
,
shrink
):
image_shape
=
[
image
.
shape
[
0
],
image
.
shape
[
1
]]
if
shrink
!=
1
:
h
,
w
=
int
(
image_shape
[
0
]
*
shrink
),
int
(
image_shape
[
1
]
*
shrink
)
image
=
cv2
.
resize
(
image
,
(
w
,
h
))
image_shape
=
[
h
,
w
]
img
=
face_img_process
(
image
)
image_shape
=
np
.
asarray
([
image_shape
])
scale_factor
=
np
.
asarray
([[
shrink
,
shrink
]])
data
=
{
"image"
:
paddle
.
to_tensor
(
img
,
dtype
=
'float32'
),
"im_shape"
:
paddle
.
to_tensor
(
image_shape
,
dtype
=
'float32'
),
"scale_factor"
:
paddle
.
to_tensor
(
scale_factor
,
dtype
=
'float32'
)
}
model
.
eval
()
detection
=
model
(
data
)
detection
=
detection
[
'bbox'
].
numpy
()
# layout: xmin, ymin, xmax. ymax, score
if
np
.
prod
(
detection
.
shape
)
==
1
:
logger
.
info
(
"No face detected"
)
return
np
.
array
([[
0
,
0
,
0
,
0
,
0
]])
det_conf
=
detection
[:,
1
]
det_xmin
=
detection
[:,
2
]
det_ymin
=
detection
[:,
3
]
det_xmax
=
detection
[:,
4
]
det_ymax
=
detection
[:,
5
]
det
=
np
.
column_stack
((
det_xmin
,
det_ymin
,
det_xmax
,
det_ymax
,
det_conf
))
return
det
def
flip_test
(
model
,
image
,
shrink
):
img
=
cv2
.
flip
(
image
,
1
)
det_f
=
detect_face
(
model
,
img
,
shrink
)
det_t
=
np
.
zeros
(
det_f
.
shape
)
img_width
=
image
.
shape
[
1
]
det_t
[:,
0
]
=
img_width
-
det_f
[:,
2
]
det_t
[:,
1
]
=
det_f
[:,
1
]
det_t
[:,
2
]
=
img_width
-
det_f
[:,
0
]
det_t
[:,
3
]
=
det_f
[:,
3
]
det_t
[:,
4
]
=
det_f
[:,
4
]
return
det_t
def
multi_scale_test
(
model
,
image
,
max_shrink
):
# Shrink detecting is only used to detect big faces
st
=
0.5
if
max_shrink
>=
0.75
else
0.5
*
max_shrink
det_s
=
detect_face
(
model
,
image
,
st
)
index
=
np
.
where
(
np
.
maximum
(
det_s
[:,
2
]
-
det_s
[:,
0
]
+
1
,
det_s
[:,
3
]
-
det_s
[:,
1
]
+
1
)
>
30
)[
0
]
det_s
=
det_s
[
index
,
:]
# Enlarge one times
bt
=
min
(
2
,
max_shrink
)
if
max_shrink
>
1
else
(
st
+
max_shrink
)
/
2
det_b
=
detect_face
(
model
,
image
,
bt
)
# Enlarge small image x times for small faces
if
max_shrink
>
2
:
bt
*=
2
while
bt
<
max_shrink
:
det_b
=
np
.
row_stack
((
det_b
,
detect_face
(
model
,
image
,
bt
)))
bt
*=
2
det_b
=
np
.
row_stack
((
det_b
,
detect_face
(
model
,
image
,
max_shrink
)))
# Enlarged images are only used to detect small faces.
if
bt
>
1
:
index
=
np
.
where
(
np
.
minimum
(
det_b
[:,
2
]
-
det_b
[:,
0
]
+
1
,
det_b
[:,
3
]
-
det_b
[:,
1
]
+
1
)
<
100
)[
0
]
det_b
=
det_b
[
index
,
:]
# Shrinked images are only used to detect big faces.
else
:
index
=
np
.
where
(
np
.
maximum
(
det_b
[:,
2
]
-
det_b
[:,
0
]
+
1
,
det_b
[:,
3
]
-
det_b
[:,
1
]
+
1
)
>
30
)[
0
]
det_b
=
det_b
[
index
,
:]
return
det_s
,
det_b
def
multi_scale_test_pyramid
(
model
,
image
,
max_shrink
):
# Use image pyramids to detect faces
det_b
=
detect_face
(
model
,
image
,
0.25
)
index
=
np
.
where
(
np
.
maximum
(
det_b
[:,
2
]
-
det_b
[:,
0
]
+
1
,
det_b
[:,
3
]
-
det_b
[:,
1
]
+
1
)
>
30
)[
0
]
det_b
=
det_b
[
index
,
:]
st
=
[
0.75
,
1.25
,
1.5
,
1.75
]
for
i
in
range
(
len
(
st
)):
if
st
[
i
]
<=
max_shrink
:
det_temp
=
detect_face
(
model
,
image
,
st
[
i
])
# Enlarged images are only used to detect small faces.
if
st
[
i
]
>
1
:
index
=
np
.
where
(
np
.
minimum
(
det_temp
[:,
2
]
-
det_temp
[:,
0
]
+
1
,
det_temp
[:,
3
]
-
det_temp
[:,
1
]
+
1
)
<
100
)[
0
]
det_temp
=
det_temp
[
index
,
:]
# Shrinked images are only used to detect big faces.
else
:
index
=
np
.
where
(
np
.
maximum
(
det_temp
[:,
2
]
-
det_temp
[:,
0
]
+
1
,
det_temp
[:,
3
]
-
det_temp
[:,
1
]
+
1
)
>
30
)[
0
]
det_temp
=
det_temp
[
index
,
:]
det_b
=
np
.
row_stack
((
det_b
,
det_temp
))
return
det_b
def
to_chw
(
image
):
"""
Transpose image from HWC to CHW.
Args:
image (np.array): an image with HWC layout.
"""
# HWC to CHW
if
len
(
image
.
shape
)
==
3
:
image
=
np
.
swapaxes
(
image
,
1
,
2
)
image
=
np
.
swapaxes
(
image
,
1
,
0
)
return
image
def
face_img_process
(
image
,
mean
=
[
104.
,
117.
,
123.
],
std
=
[
127.502231
,
127.502231
,
127.502231
]):
img
=
np
.
array
(
image
)
img
=
to_chw
(
img
)
img
=
img
.
astype
(
'float32'
)
img
-=
np
.
array
(
mean
)[:,
np
.
newaxis
,
np
.
newaxis
].
astype
(
'float32'
)
img
/=
np
.
array
(
std
)[:,
np
.
newaxis
,
np
.
newaxis
].
astype
(
'float32'
)
img
=
[
img
]
img
=
np
.
array
(
img
)
return
img
def
get_shrink
(
height
,
width
):
"""
Args:
height (int): image height.
width (int): image width.
"""
# avoid out of memory
max_shrink_v1
=
(
0x7fffffff
/
577.0
/
(
height
*
width
))
**
0.5
max_shrink_v2
=
((
678
*
1024
*
2.0
*
2.0
)
/
(
height
*
width
))
**
0.5
def
get_round
(
x
,
loc
):
str_x
=
str
(
x
)
if
'.'
in
str_x
:
str_before
,
str_after
=
str_x
.
split
(
'.'
)
len_after
=
len
(
str_after
)
if
len_after
>=
3
:
str_final
=
str_before
+
'.'
+
str_after
[
0
:
loc
]
return
float
(
str_final
)
else
:
return
x
max_shrink
=
get_round
(
min
(
max_shrink_v1
,
max_shrink_v2
),
2
)
-
0.3
if
max_shrink
>=
1.5
and
max_shrink
<
2
:
max_shrink
=
max_shrink
-
0.1
elif
max_shrink
>=
2
and
max_shrink
<
3
:
max_shrink
=
max_shrink
-
0.2
elif
max_shrink
>=
3
and
max_shrink
<
4
:
max_shrink
=
max_shrink
-
0.3
elif
max_shrink
>=
4
and
max_shrink
<
5
:
max_shrink
=
max_shrink
-
0.4
elif
max_shrink
>=
5
:
max_shrink
=
max_shrink
-
0.5
elif
max_shrink
<=
0.1
:
max_shrink
=
0.1
shrink
=
max_shrink
if
max_shrink
<
1
else
1
return
shrink
,
max_shrink
def
bbox_vote
(
det
):
order
=
det
[:,
4
].
ravel
().
argsort
()[::
-
1
]
det
=
det
[
order
,
:]
if
det
.
shape
[
0
]
==
0
:
dets
=
np
.
array
([[
10
,
10
,
20
,
20
,
0.002
]])
det
=
np
.
empty
(
shape
=
[
0
,
5
])
while
det
.
shape
[
0
]
>
0
:
# IOU
area
=
(
det
[:,
2
]
-
det
[:,
0
]
+
1
)
*
(
det
[:,
3
]
-
det
[:,
1
]
+
1
)
xx1
=
np
.
maximum
(
det
[
0
,
0
],
det
[:,
0
])
yy1
=
np
.
maximum
(
det
[
0
,
1
],
det
[:,
1
])
xx2
=
np
.
minimum
(
det
[
0
,
2
],
det
[:,
2
])
yy2
=
np
.
minimum
(
det
[
0
,
3
],
det
[:,
3
])
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
1
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
1
)
inter
=
w
*
h
o
=
inter
/
(
area
[
0
]
+
area
[:]
-
inter
)
# nms
merge_index
=
np
.
where
(
o
>=
0.3
)[
0
]
det_accu
=
det
[
merge_index
,
:]
det
=
np
.
delete
(
det
,
merge_index
,
0
)
if
merge_index
.
shape
[
0
]
<=
1
:
if
det
.
shape
[
0
]
==
0
:
try
:
dets
=
np
.
row_stack
((
dets
,
det_accu
))
except
:
dets
=
det_accu
continue
det_accu
[:,
0
:
4
]
=
det_accu
[:,
0
:
4
]
*
np
.
tile
(
det_accu
[:,
-
1
:],
(
1
,
4
))
max_score
=
np
.
max
(
det_accu
[:,
4
])
det_accu_sum
=
np
.
zeros
((
1
,
5
))
det_accu_sum
[:,
0
:
4
]
=
np
.
sum
(
det_accu
[:,
0
:
4
],
axis
=
0
)
/
np
.
sum
(
det_accu
[:,
-
1
:])
det_accu_sum
[:,
4
]
=
max_score
try
:
dets
=
np
.
row_stack
((
dets
,
det_accu_sum
))
except
:
dets
=
det_accu_sum
dets
=
dets
[
0
:
750
,
:]
keep_index
=
np
.
where
(
dets
[:,
4
]
>=
0.01
)[
0
]
dets
=
dets
[
keep_index
,
:]
return
dets
def
save_widerface_bboxes
(
image_path
,
bboxes_scores
,
output_dir
):
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
image_class
=
image_path
.
split
(
'/'
)[
-
2
]
odir
=
os
.
path
.
join
(
output_dir
,
image_class
)
if
not
os
.
path
.
exists
(
odir
):
os
.
makedirs
(
odir
)
ofname
=
os
.
path
.
join
(
odir
,
'%s.txt'
%
(
image_name
[:
-
4
]))
f
=
open
(
ofname
,
'w'
)
f
.
write
(
'{:s}
\n
'
.
format
(
image_class
+
'/'
+
image_name
))
f
.
write
(
'{:d}
\n
'
.
format
(
bboxes_scores
.
shape
[
0
]))
for
box_score
in
bboxes_scores
:
xmin
,
ymin
,
xmax
,
ymax
,
score
=
box_score
f
.
write
(
'{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}
\n
'
.
format
(
xmin
,
ymin
,
(
xmax
-
xmin
+
1
),
(
ymax
-
ymin
+
1
),
score
))
f
.
close
()
logger
.
info
(
"The predicted result is saved as {}"
.
format
(
ofname
))
def
save_fddb_bboxes
(
bboxes_scores
,
output_dir
,
output_fname
=
'pred_fddb_res.txt'
):
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
predict_file
=
os
.
path
.
join
(
output_dir
,
output_fname
)
f
=
open
(
predict_file
,
'w'
)
for
image_path
,
dets
in
bboxes_scores
.
iteritems
():
f
.
write
(
'{:s}
\n
'
.
format
(
image_path
))
f
.
write
(
'{:d}
\n
'
.
format
(
dets
.
shape
[
0
]))
for
box_score
in
dets
:
xmin
,
ymin
,
xmax
,
ymax
,
score
=
box_score
width
,
height
=
xmax
-
xmin
,
ymax
-
ymin
f
.
write
(
'{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}
\n
'
.
format
(
xmin
,
ymin
,
width
,
height
,
score
))
logger
.
info
(
"The predicted result is saved as {}"
.
format
(
predict_file
))
return
predict_file
def
lmk2out
(
results
,
is_bbox_normalized
=
False
):
"""
Args:
results: request a dict, should include: `landmark`, `im_id`,
if is_bbox_normalized=True, also need `im_shape`.
is_bbox_normalized: whether or not landmark is normalized.
"""
xywh_res
=
[]
for
t
in
results
:
bboxes
=
t
[
'bbox'
][
0
]
lengths
=
t
[
'bbox'
][
1
][
0
]
im_ids
=
np
.
array
(
t
[
'im_id'
][
0
]).
flatten
()
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
continue
face_index
=
t
[
'face_index'
][
0
]
prior_box
=
t
[
'prior_boxes'
][
0
]
predict_lmk
=
t
[
'landmark'
][
0
]
prior
=
np
.
reshape
(
prior_box
,
(
-
1
,
4
))
predictlmk
=
np
.
reshape
(
predict_lmk
,
(
-
1
,
10
))
k
=
0
for
a
in
range
(
len
(
lengths
)):
num
=
lengths
[
a
]
im_id
=
int
(
im_ids
[
a
])
for
i
in
range
(
num
):
score
=
bboxes
[
k
][
1
]
theindex
=
face_index
[
i
][
0
]
me_prior
=
prior
[
theindex
,
:]
lmk_pred
=
predictlmk
[
theindex
,
:]
prior_w
=
me_prior
[
2
]
-
me_prior
[
0
]
prior_h
=
me_prior
[
3
]
-
me_prior
[
1
]
prior_w_center
=
(
me_prior
[
2
]
+
me_prior
[
0
])
/
2
prior_h_center
=
(
me_prior
[
3
]
+
me_prior
[
1
])
/
2
lmk_decode
=
np
.
zeros
((
10
))
for
j
in
[
0
,
2
,
4
,
6
,
8
]:
lmk_decode
[
j
]
=
lmk_pred
[
j
]
*
0.1
*
prior_w
+
prior_w_center
for
j
in
[
1
,
3
,
5
,
7
,
9
]:
lmk_decode
[
j
]
=
lmk_pred
[
j
]
*
0.1
*
prior_h
+
prior_h_center
im_shape
=
t
[
'im_shape'
][
0
][
a
].
tolist
()
image_h
,
image_w
=
int
(
im_shape
[
0
]),
int
(
im_shape
[
1
])
if
is_bbox_normalized
:
lmk_decode
=
lmk_decode
*
np
.
array
([
image_w
,
image_h
,
image_w
,
image_h
,
image_w
,
image_h
,
image_w
,
image_h
,
image_w
,
image_h
])
lmk_res
=
{
'image_id'
:
im_id
,
'landmark'
:
lmk_decode
,
'score'
:
score
,
}
xywh_res
.
append
(
lmk_res
)
k
+=
1
return
xywh_res
dygraph/ppdet/modeling/architectures/ssd.py
浏览文件 @
01d905e3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
dygraph/ppdet/modeling/backbones/__init__.py
浏览文件 @
01d905e3
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
vgg
from
.
import
resnet
from
.
import
darknet
from
.
import
mobilenet_v1
from
.
import
mobilenet_v3
from
.
import
hrnet
from
.
import
blazenet
from
.vgg
import
*
from
.resnet
import
*
...
...
@@ -11,3 +26,4 @@ from .darknet import *
from
.mobilenet_v1
import
*
from
.mobilenet_v3
import
*
from
.hrnet
import
*
from
.blazenet
import
*
dygraph/ppdet/modeling/backbones/blazenet.py
0 → 100644
浏览文件 @
01d905e3
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
from
paddle.regularizer
import
L2Decay
from
paddle.nn.initializer
import
KaimingNormal
from
ppdet.core.workspace
import
register
,
serializable
from
numbers
import
Integral
from
..shape_spec
import
ShapeSpec
__all__
=
[
'BlazeNet'
]
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
padding
,
num_groups
=
1
,
act
=
'relu'
,
conv_lr
=
0.1
,
conv_decay
=
0.
,
norm_decay
=
0.
,
norm_type
=
'bn'
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
act
=
act
self
.
_conv
=
nn
.
Conv2D
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
weight_attr
=
ParamAttr
(
learning_rate
=
conv_lr
,
initializer
=
KaimingNormal
(),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
)
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
)
if
norm_type
==
'sync_bn'
:
self
.
_batch_norm
=
nn
.
SyncBatchNorm
(
out_channels
,
weight_attr
=
param_attr
,
bias_attr
=
bias_attr
)
else
:
self
.
_batch_norm
=
nn
.
BatchNorm
(
out_channels
,
act
=
None
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_global_stats
=
False
,
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
x
):
x
=
self
.
_conv
(
x
)
x
=
self
.
_batch_norm
(
x
)
if
self
.
act
==
"relu"
:
x
=
F
.
relu
(
x
)
elif
self
.
act
==
"relu6"
:
x
=
F
.
relu6
(
x
)
return
x
class
BlazeBlock
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels1
,
out_channels2
,
double_channels
=
None
,
stride
=
1
,
use_5x5kernel
=
True
,
name
=
None
):
super
(
BlazeBlock
,
self
).
__init__
()
assert
stride
in
[
1
,
2
]
self
.
use_pool
=
not
stride
==
1
self
.
use_double_block
=
double_channels
is
not
None
self
.
conv_dw
=
[]
if
use_5x5kernel
:
self
.
conv_dw
.
append
(
self
.
add_sublayer
(
name
+
"1_dw"
,
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels1
,
kernel_size
=
5
,
stride
=
stride
,
padding
=
2
,
num_groups
=
out_channels1
,
name
=
name
+
"1_dw"
)))
else
:
self
.
conv_dw
.
append
(
self
.
add_sublayer
(
name
+
"1_dw_1"
,
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels1
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
num_groups
=
out_channels1
,
name
=
name
+
"1_dw_1"
)))
self
.
conv_dw
.
append
(
self
.
add_sublayer
(
name
+
"1_dw_2"
,
ConvBNLayer
(
in_channels
=
out_channels1
,
out_channels
=
out_channels1
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
num_groups
=
out_channels1
,
name
=
name
+
"1_dw_2"
)))
act
=
'relu'
if
self
.
use_double_block
else
None
self
.
conv_pw
=
ConvBNLayer
(
in_channels
=
out_channels1
,
out_channels
=
out_channels2
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
act
,
name
=
name
+
"1_sep"
)
if
self
.
use_double_block
:
self
.
conv_dw2
=
[]
if
use_5x5kernel
:
self
.
conv_dw2
.
append
(
self
.
add_sublayer
(
name
+
"2_dw"
,
ConvBNLayer
(
in_channels
=
out_channels2
,
out_channels
=
out_channels2
,
kernel_size
=
5
,
stride
=
1
,
padding
=
2
,
num_groups
=
out_channels2
,
name
=
name
+
"2_dw"
)))
else
:
self
.
conv_dw2
.
append
(
self
.
add_sublayer
(
name
+
"2_dw_1"
,
ConvBNLayer
(
in_channels
=
out_channels2
,
out_channels
=
out_channels2
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
num_groups
=
out_channels2
,
name
=
name
+
"1_dw_1"
)))
self
.
conv_dw2
.
append
(
self
.
add_sublayer
(
name
+
"2_dw_2"
,
ConvBNLayer
(
in_channels
=
out_channels2
,
out_channels
=
out_channels2
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
num_groups
=
out_channels2
,
name
=
name
+
"2_dw_2"
)))
self
.
conv_pw2
=
ConvBNLayer
(
in_channels
=
out_channels2
,
out_channels
=
double_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
name
=
name
+
"2_sep"
)
# shortcut
if
self
.
use_pool
:
shortcut_channel
=
double_channels
or
out_channels2
self
.
_shortcut
=
[]
self
.
_shortcut
.
append
(
self
.
add_sublayer
(
name
+
'_shortcut_pool'
,
nn
.
MaxPool2D
(
kernel_size
=
stride
,
stride
=
stride
,
ceil_mode
=
True
)))
self
.
_shortcut
.
append
(
self
.
add_sublayer
(
name
+
'_shortcut_conv'
,
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
shortcut_channel
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
name
=
"shortcut"
+
name
)))
def
forward
(
self
,
x
):
y
=
x
for
conv_dw_block
in
self
.
conv_dw
:
y
=
conv_dw_block
(
y
)
y
=
self
.
conv_pw
(
y
)
if
self
.
use_double_block
:
for
conv_dw2_block
in
self
.
conv_dw2
:
y
=
conv_dw2_block
(
y
)
y
=
self
.
conv_pw2
(
y
)
if
self
.
use_pool
:
for
shortcut
in
self
.
_shortcut
:
x
=
shortcut
(
x
)
return
F
.
relu
(
paddle
.
add
(
x
,
y
))
@
register
@
serializable
class
BlazeNet
(
nn
.
Layer
):
"""
BlazeFace, see https://arxiv.org/abs/1907.05047
Args:
blaze_filters (list): number of filter for each blaze block.
double_blaze_filters (list): number of filter for each double_blaze block.
use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv.
"""
def
__init__
(
self
,
blaze_filters
=
[[
24
,
24
],
[
24
,
24
],
[
24
,
48
,
2
],
[
48
,
48
],
[
48
,
48
]],
double_blaze_filters
=
[[
48
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
],
[
96
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
]],
use_5x5kernel
=
True
):
super
(
BlazeNet
,
self
).
__init__
()
conv1_num_filters
=
blaze_filters
[
0
][
0
]
self
.
conv1
=
ConvBNLayer
(
in_channels
=
3
,
out_channels
=
conv1_num_filters
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
name
=
"conv1"
)
in_channels
=
conv1_num_filters
self
.
blaze_block
=
[]
self
.
_out_channels
=
[]
for
k
,
v
in
enumerate
(
blaze_filters
):
assert
len
(
v
)
in
[
2
,
3
],
\
"blaze_filters {} not in [2, 3]"
if
len
(
v
)
==
2
:
self
.
blaze_block
.
append
(
self
.
add_sublayer
(
'blaze_{}'
.
format
(
k
),
BlazeBlock
(
in_channels
,
v
[
0
],
v
[
1
],
use_5x5kernel
=
use_5x5kernel
,
name
=
'blaze_{}'
.
format
(
k
))))
elif
len
(
v
)
==
3
:
self
.
blaze_block
.
append
(
self
.
add_sublayer
(
'blaze_{}'
.
format
(
k
),
BlazeBlock
(
in_channels
,
v
[
0
],
v
[
1
],
stride
=
v
[
2
],
use_5x5kernel
=
use_5x5kernel
,
name
=
'blaze_{}'
.
format
(
k
))))
in_channels
=
v
[
1
]
for
k
,
v
in
enumerate
(
double_blaze_filters
):
assert
len
(
v
)
in
[
3
,
4
],
\
"blaze_filters {} not in [3, 4]"
if
len
(
v
)
==
3
:
self
.
blaze_block
.
append
(
self
.
add_sublayer
(
'double_blaze_{}'
.
format
(
k
),
BlazeBlock
(
in_channels
,
v
[
0
],
v
[
1
],
double_channels
=
v
[
2
],
use_5x5kernel
=
use_5x5kernel
,
name
=
'double_blaze_{}'
.
format
(
k
))))
elif
len
(
v
)
==
4
:
self
.
blaze_block
.
append
(
self
.
add_sublayer
(
'double_blaze_{}'
.
format
(
k
),
BlazeBlock
(
in_channels
,
v
[
0
],
v
[
1
],
double_channels
=
v
[
2
],
stride
=
v
[
3
],
use_5x5kernel
=
use_5x5kernel
,
name
=
'double_blaze_{}'
.
format
(
k
))))
in_channels
=
v
[
2
]
self
.
_out_channels
.
append
(
in_channels
)
def
forward
(
self
,
inputs
):
outs
=
[]
y
=
self
.
conv1
(
inputs
[
'image'
])
for
block
in
self
.
blaze_block
:
y
=
block
(
y
)
outs
.
append
(
y
)
return
[
outs
[
-
4
],
outs
[
-
1
]]
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
c
)
for
c
in
[
self
.
_out_channels
[
-
4
],
self
.
_out_channels
[
-
1
]]
]
dygraph/ppdet/modeling/heads/__init__.py
浏览文件 @
01d905e3
...
...
@@ -21,6 +21,7 @@ from . import fcos_head
from
.
import
solov2_head
from
.
import
ttf_head
from
.
import
cascade_head
from
.
import
face_head
from
.bbox_head
import
*
from
.mask_head
import
*
...
...
@@ -31,3 +32,4 @@ from .fcos_head import *
from
.solov2_head
import
*
from
.ttf_head
import
*
from
.cascade_head
import
*
from
.face_head
import
*
dygraph/ppdet/modeling/heads/face_head.py
0 → 100644
浏览文件 @
01d905e3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
ppdet.core.workspace
import
register
from
paddle.regularizer
import
L2Decay
from
paddle
import
ParamAttr
from
..layers
import
AnchorGeneratorSSD
@
register
class
FaceHead
(
nn
.
Layer
):
"""
Head block for Face detection network
Args:
num_classes (int): Number of output classes.
in_channels (int): Number of input channels.
anchor_generator(object): instance of anchor genertor method.
kernel_size (int): kernel size of Conv2D in FaceHead.
padding (int): padding of Conv2D in FaceHead.
conv_decay (float): norm_decay (float): weight decay for conv layer weights.
loss (object): loss of face detection model.
"""
__shared__
=
[
'num_classes'
]
__inject__
=
[
'anchor_generator'
,
'loss'
]
def
__init__
(
self
,
num_classes
=
80
,
in_channels
=
(
96
,
96
),
anchor_generator
=
AnchorGeneratorSSD
().
__dict__
,
kernel_size
=
3
,
padding
=
1
,
conv_decay
=
0.
,
loss
=
'SSDLoss'
):
super
(
FaceHead
,
self
).
__init__
()
# add background class
self
.
num_classes
=
num_classes
+
1
self
.
in_channels
=
in_channels
self
.
anchor_generator
=
anchor_generator
self
.
loss
=
loss
if
isinstance
(
anchor_generator
,
dict
):
self
.
anchor_generator
=
AnchorGeneratorSSD
(
**
anchor_generator
)
self
.
num_priors
=
self
.
anchor_generator
.
num_priors
self
.
box_convs
=
[]
self
.
score_convs
=
[]
for
i
,
num_prior
in
enumerate
(
self
.
num_priors
):
box_conv_name
=
"boxes{}"
.
format
(
i
)
box_conv
=
self
.
add_sublayer
(
box_conv_name
,
nn
.
Conv2D
(
in_channels
=
in_channels
[
i
],
out_channels
=
num_prior
*
4
,
kernel_size
=
kernel_size
,
padding
=
padding
))
self
.
box_convs
.
append
(
box_conv
)
score_conv_name
=
"scores{}"
.
format
(
i
)
score_conv
=
self
.
add_sublayer
(
score_conv_name
,
nn
.
Conv2D
(
in_channels
=
in_channels
[
i
],
out_channels
=
num_prior
*
self
.
num_classes
,
kernel_size
=
kernel_size
,
padding
=
padding
))
self
.
score_convs
.
append
(
score_conv
)
@
classmethod
def
from_config
(
cls
,
cfg
,
input_shape
):
return
{
'in_channels'
:
[
i
.
channels
for
i
in
input_shape
],
}
def
forward
(
self
,
feats
,
image
,
gt_bbox
=
None
,
gt_class
=
None
):
box_preds
=
[]
cls_scores
=
[]
prior_boxes
=
[]
for
feat
,
box_conv
,
score_conv
in
zip
(
feats
,
self
.
box_convs
,
self
.
score_convs
):
box_pred
=
box_conv
(
feat
)
box_pred
=
paddle
.
transpose
(
box_pred
,
[
0
,
2
,
3
,
1
])
box_pred
=
paddle
.
reshape
(
box_pred
,
[
0
,
-
1
,
4
])
box_preds
.
append
(
box_pred
)
cls_score
=
score_conv
(
feat
)
cls_score
=
paddle
.
transpose
(
cls_score
,
[
0
,
2
,
3
,
1
])
cls_score
=
paddle
.
reshape
(
cls_score
,
[
0
,
-
1
,
self
.
num_classes
])
cls_scores
.
append
(
cls_score
)
prior_boxes
=
self
.
anchor_generator
(
feats
,
image
)
if
self
.
training
:
return
self
.
get_loss
(
box_preds
,
cls_scores
,
gt_bbox
,
gt_class
,
prior_boxes
)
else
:
return
(
box_preds
,
cls_scores
),
prior_boxes
def
get_loss
(
self
,
boxes
,
scores
,
gt_bbox
,
gt_class
,
prior_boxes
):
return
self
.
loss
(
boxes
,
scores
,
gt_bbox
,
gt_class
,
prior_boxes
)
dygraph/ppdet/modeling/heads/ssd_head.py
浏览文件 @
01d905e3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
...
...
dygraph/ppdet/modeling/layers.py
浏览文件 @
01d905e3
...
...
@@ -271,6 +271,10 @@ class AnchorGeneratorSSD(object):
self
.
num_priors
=
[]
for
aspect_ratio
,
min_size
,
max_size
in
zip
(
aspect_ratios
,
self
.
min_sizes
,
self
.
max_sizes
):
if
isinstance
(
min_size
,
(
list
,
tuple
)):
self
.
num_priors
.
append
(
len
(
_to_list
(
min_size
))
+
len
(
_to_list
(
max_size
)))
else
:
self
.
num_priors
.
append
((
len
(
aspect_ratio
)
*
2
+
1
)
*
len
(
_to_list
(
min_size
))
+
len
(
_to_list
(
max_size
)))
...
...
dygraph/ppdet/utils/checkpoint.py
浏览文件 @
01d905e3
...
...
@@ -136,8 +136,10 @@ def load_pretrain_weight(model,
path
=
_strip_postfix
(
pretrain_weight
)
if
not
(
os
.
path
.
isdir
(
path
)
or
os
.
path
.
isfile
(
path
)
or
os
.
path
.
exists
(
path
+
'.pdparams'
)):
raise
ValueError
(
"Model pretrain path {} does not "
"exists."
.
format
(
path
))
raise
ValueError
(
"Model pretrain path `{}` does not exists. "
"If you don't want to load pretrain model, "
"please delete `pretrain_weights` field in "
"config file."
.
format
(
path
))
model_dict
=
model
.
state_dict
()
...
...
dygraph/tools/train.py
浏览文件 @
01d905e3
...
...
@@ -91,7 +91,7 @@ def run(FLAGS, cfg):
trainer
=
Trainer
(
cfg
,
mode
=
'train'
)
# load weights
if
not
FLAGS
.
slim_config
:
if
not
FLAGS
.
slim_config
and
'pretrain_weights'
in
cfg
and
cfg
.
pretrain_weights
:
trainer
.
load_weights
(
cfg
.
pretrain_weights
,
FLAGS
.
weight_type
)
# training
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录