From 01be6a1bd77038d0482953eb7f5d7e29209df813 Mon Sep 17 00:00:00 2001 From: qingqing01 Date: Fri, 7 May 2021 16:30:07 +0800 Subject: [PATCH] Update README.md --- deploy/python/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/deploy/python/README.md b/deploy/python/README.md index 3abee98cf..e0a5a32b0 100644 --- a/deploy/python/README.md +++ b/deploy/python/README.md @@ -3,7 +3,7 @@ Python预测可以使用`tools/infer.py`,此种方式依赖PaddleDetection源码;也可以使用本篇教程预测方式,先将模型导出,使用一个独立的文件进行预测。 -本篇教程使用AnalysisPredictor对[导出模型](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/deploy/EXPORT_MODEL.md)进行高性能预测。 +本篇教程使用AnalysisPredictor对[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md)进行高性能预测。 在PaddlePaddle中预测引擎和训练引擎底层有着不同的优化方法, 预测引擎使用了AnalysisPredictor,专门针对推理进行了优化,是基于[C++预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/native_infer.html)的Python接口,该引擎可以对模型进行多项图优化,减少不必要的内存拷贝。如果用户在部署已训练模型的过程中对性能有较高的要求,我们提供了独立于PaddleDetection的预测脚本,方便用户直接集成部署。 @@ -15,7 +15,7 @@ Python预测可以使用`tools/infer.py`,此种方式依赖PaddleDetection源 ## 1. 导出预测模型 -PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/deploy/EXPORT_MODEL.md) +PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md) 导出后目录下,包括`infer_cfg.yml`, `model.pdiparams`, `model.pdiparams.info`, `model.pdmodel`四个文件。 -- GitLab