未验证 提交 0049ce04 编写于 作者: Q Qiao Longfei 提交者: GitHub

03 image classification (#5192)

* add batch_norm_layer

* add img_conv_group layer and test

* add check to Tensor.type()

* forward can run

* with backward

* change label data time from int32 to int64

* refine code

* follow comment
上级 833d0ad0
......@@ -408,6 +408,7 @@ class OperatorWithKernel : public OperatorBase {
// indicate kernel DataType by input data. Defaultly all input data must be
// same.
virtual DataType IndicateDataType(const ExecutionContext& ctx) const {
VLOG(3) << "Default IndicateDataType " << this->Type();
auto& scope = ctx.scope();
int data_type = -1;
for (auto& input : this->inputs_) {
......
......@@ -126,11 +126,16 @@ class Tensor {
inline Tensor Slice(const int& begin_idx, const int& end_idx) const;
platform::Place place() const {
PADDLE_ENFORCE_NOT_NULL(holder_, "Tensor get place() must contains holder");
PADDLE_ENFORCE_NOT_NULL(
holder_, "Tensor not initialized yet when Tensor::place() is called.");
return holder_->place();
}
std::type_index type() const { return holder_->type(); }
std::type_index type() const {
PADDLE_ENFORCE_NOT_NULL(
holder_, "Tensor not initialized yet when Tensor::type() is called.");
return holder_->type();
}
size_t memory_size() const;
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
......@@ -64,6 +65,9 @@ class BatchNormOp : public framework::OperatorWithKernel {
(tensor_format == TensorFormat::NCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5,
"Input x must have 3 to 5 dimensions.");
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
......@@ -108,10 +112,12 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
"Store the global Variance when training");
AddOutput("SavedMean",
"Mean of the current mini batch, "
"will apply to output when training");
"will apply to output when training")
.AsIntermediate();
AddOutput("SavedVariance",
"Variance of the current mini batch, "
"will apply to output when training");
"will apply to output when training")
.AsIntermediate();
AddComment(R"DOC(
https://arxiv.org/pdf/1502.03167.pdf
......@@ -135,7 +141,6 @@ class BatchNormKernel<platform::CPUPlace, T> : public framework::OpKernel<T> {
const auto *x = ctx.Input<Tensor>("X");
const auto &x_dims = x->dims();
PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5,
"The Input dim size should be between 3 and 5");
const int N = x_dims[0];
......@@ -289,6 +294,25 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
}
framework::DataType IndicateDataType(
const framework::ExecutionContext &ctx) const override {
VLOG(3) << "IndicateDataType " << this->Type();
const auto *var = ctx.InputVar(framework::GradVarName("Y"));
if (var == nullptr) {
PADDLE_THROW("can't find Y@GRAD");
}
const Tensor *t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
}
if (t == nullptr) {
PADDLE_THROW("can't find Y@GRAD");
}
return framework::ToDataType(t->type());
}
};
template <typename T>
......
......@@ -34,13 +34,19 @@ class ReshapeOp : public framework::OperatorWithKernel {
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
for (auto dim : shape) {
PADDLE_ENFORCE(dim > 0, "Each dimension of shape must be positive.");
auto x_dims = ctx->GetInputDim("X");
// TODO(qiao) change batch_size
for (int i = 1; i < shape.size(); ++i) {
PADDLE_ENFORCE(shape[i] > 0,
"Each dimension of shape "
"must be positiv except the first.");
}
if (shape[0] < 0) {
shape[0] = x_dims[0];
}
// capacity check
int64_t capacity =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
auto x_dims = ctx->GetInputDim("X");
int64_t in_size = framework::product(x_dims);
PADDLE_ENFORCE_EQ(capacity, in_size,
"The size of Input(X) mismatches with Attr(shape).");
......
......@@ -26,13 +26,8 @@ class ReshapeKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const {
auto* out = ctx.Output<framework::Tensor>("Out");
auto* in = ctx.Input<framework::Tensor>("X");
auto out_dims = out->dims();
out->mutable_data<T>(ctx.GetPlace());
auto shape = ctx.Attr<std::vector<int>>("shape");
std::vector<int64_t> shape_int64(shape.size(), 0);
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
out->CopyFrom(*in, ctx.GetPlace(), ctx.device_context());
out->Resize(out_dims);
}
......
......@@ -352,7 +352,10 @@ class Block(object):
return {v for k, v in self.vars.iteritems() if isinstance(v, Parameter)}
def create_var(self, *args, **kwargs):
return Variable(self, *args, **kwargs)
var = Variable(self, *args, **kwargs)
if 'init_attr' in kwargs:
self._prepend_initialize_ops_(var, kwargs['init_attr'])
return var
def has_var(self, name):
return name in self.vars
......
......@@ -161,6 +161,7 @@ def _create_op_func_(op_type):
_create_op_func_('mean')
_create_op_func_('mul')
_create_op_func_('dropout')
_create_op_func_('reshape')
def cast(x, data_type, program=None):
......@@ -308,6 +309,96 @@ def pool2d(input,
return pool_out
def batch_norm(input,
act=None,
is_test=False,
momentum=0.9,
epsilon=1e05,
param_attr=None,
bias_attr=None,
data_layout='NCHW',
program=None,
init_program=None):
helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype()
input_shape = input.shape
if data_layout == 'NCHW':
channel_num = input_shape[1]
else:
if data_layout == 'NHWC':
channel_num = input_shape[-1]
else:
raise ValueError("unsupported data layout:" + data_layout)
def get_init_attr(value):
if not isinstance(value, float):
raise ValueError("attr value should be a float")
return {'type': 'fill_constant', 'value': value}
def prepend_init_op(var, init_attr):
assert isinstance(var, Variable)
op_type = init_attr['type']
init_attr['shape'] = var.shape
init_attr['data_type'] = int(var.data_type)
op = var.block.prepend_op(
type=op_type, inputs=None, outputs={'Out': [var]}, attrs=init_attr)
return op
def create_persistable_var(dtype, shape, init_attr=None):
name = unique_name(".".join([helper.name, "xxxx"]))
var = init_program.global_block().create_var(
dtype=dtype, shape=shape, name=name, persistable=True)
if 'init_attr' is not None:
prepend_init_op(var, init_attr)
return program.global_block().create_var(
name=name, dtype=dtype, shape=shape, persistable=True)
param_shape = [channel_num]
# create parameter
scale = helper.create_parameter(
attr=helper.param_attr, shape=param_shape, dtype=dtype)
bias = helper.create_parameter(
attr=helper.param_attr, shape=param_shape, dtype=dtype)
# create input
mean = create_persistable_var(dtype, param_shape, get_init_attr(0.0))
variance = create_persistable_var(dtype, param_shape, get_init_attr(1.0))
# create output
# mean and mean_out share the same memory
mean_out = mean
# variance and variance out share the same memory
variance_out = variance
saved_mean = helper.create_tmp_variable(dtype)
saved_variance = helper.create_tmp_variable(dtype)
batch_norm_out = helper.create_tmp_variable(dtype)
helper.append_op(
type="batch_norm",
inputs={
"X": input,
"Scale": scale,
"Bias": bias,
"Mean": mean,
"Variance": variance
},
outputs={
"Y": batch_norm_out,
"MeanOut": mean_out,
"VarianceOut": variance_out,
"SavedMean": saved_mean,
"SavedVariance": saved_variance
},
attrs={"momentum": momentum,
"epsilon": epsilon,
"is_test": is_test})
return helper.append_activation(batch_norm_out)
class BlockGuard(object):
"""
BlockGuard used to create sub-block in program by using Python `with`
......
......@@ -7,6 +7,7 @@ def simple_img_conv_pool(input,
pool_size,
pool_stride,
act,
pool_type='max',
program=None,
init_program=None):
conv_out = layers.conv2d(
......@@ -20,7 +21,75 @@ def simple_img_conv_pool(input,
pool_out = layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_type='max',
pool_type=pool_type,
pool_stride=pool_stride,
program=program,
init_program=init_program)
return pool_out
def img_conv_group(input,
conv_num_filter,
pool_size,
conv_padding=1,
conv_filter_size=3,
conv_act=None,
conv_with_batchnorm=False,
conv_batchnorm_drop_rate=None,
pool_stride=1,
pool_type=None,
program=None,
init_program=None):
"""
Image Convolution Group, Used for vgg net.
"""
tmp = input
assert isinstance(conv_num_filter, list) or \
isinstance(conv_num_filter, tuple)
def __extend_list__(obj):
if not hasattr(obj, '__len__'):
return [obj] * len(conv_num_filter)
else:
return obj
conv_padding = __extend_list__(conv_padding)
conv_filter_size = __extend_list__(conv_filter_size)
conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)
for i in xrange(len(conv_num_filter)):
local_conv_act = conv_act
if conv_with_batchnorm[i]:
local_conv_act = None
tmp = layers.conv2d(
input=tmp,
num_filters=conv_num_filter[i],
filter_size=conv_filter_size[i],
padding=conv_padding[i],
act=local_conv_act,
program=program,
init_program=init_program)
if conv_with_batchnorm[i]:
tmp = layers.batch_norm(
input=tmp,
act=conv_act,
program=program,
init_program=init_program)
drop_rate = conv_batchnorm_drop_rate[i]
if abs(drop_rate) > 1e-5:
tmp = layers.dropout(
x=tmp,
dropout_prob=drop_rate,
program=program,
init_program=init_program)
pool_out = layers.pool2d(
input=tmp,
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
program=program,
init_program=init_program)
......
import unittest
import paddle.v2.framework.layers as layers
import paddle.v2.framework.nets as nets
from paddle.v2.framework.framework import Program
def conv_block(input,
num_filter,
groups,
dropouts,
program=None,
init_program=None):
return nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max',
program=program,
init_program=init_program)
class TestLayer(unittest.TestCase):
def test_batch_norm_layer(self):
program = Program()
init_program = Program()
images = layers.data(
name='pixel',
shape=[3, 48, 48],
data_type='float32',
program=program)
layers.batch_norm(
input=images, program=program, init_program=init_program)
#print str(program)
def test_dropout_layer(self):
program = Program()
init_program = Program()
images = layers.data(
name='pixel',
shape=[3, 48, 48],
data_type='float32',
program=program)
layers.dropout(
x=images,
dropout_prob=0.5,
program=program,
init_program=init_program)
#print str(program)
def test_img_conv_group(self):
program = Program()
init_program = Program()
images = layers.data(
name='pixel',
shape=[3, 48, 48],
data_type='float32',
program=program,
init_program=init_program)
conv1 = conv_block(images, 64, 2, [0.3, 0], program, init_program)
conv2 = conv_block(conv1, 256, 3, [0.4, 0.4, 0], program, init_program)
# print str(program)
if __name__ == '__main__':
unittest.main()
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.nets as nets
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer
from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor
import numpy as np
def vgg16_bn_drop(input, program, init_program):
def conv_block(input,
num_filter,
groups,
dropouts,
program=None,
init_program=None):
return nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max',
program=program,
init_program=init_program)
conv1 = conv_block(input, 64, 2, [0.3, 0], program, init_program)
conv2 = conv_block(conv1, 128, 2, [0.4, 0], program, init_program)
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0], program, init_program)
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0], program, init_program)
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0], program, init_program)
drop = layers.dropout(
x=conv5, dropout_prob=0.5, program=program, init_program=init_program)
fc1 = layers.fc(input=drop,
size=512,
act=None,
program=program,
init_program=init_program)
reshape1 = layers.reshape(
x=fc1,
shape=list(fc1.shape + (1, 1)),
program=program,
init_program=init_program)
bn = layers.batch_norm(
input=reshape1, act='relu', program=program, init_program=init_program)
drop2 = layers.dropout(
x=bn, dropout_prob=0.5, program=program, init_program=init_program)
fc2 = layers.fc(input=drop2,
size=512,
act=None,
program=program,
init_program=init_program)
return fc2
init_program = Program()
program = Program()
classdim = 10
data_shape = [3, 32, 32]
images = layers.data(
name='pixel', shape=data_shape, data_type='float32', program=program)
label = layers.data(
name='label',
shape=[1],
data_type='int64',
program=program,
init_program=init_program)
vgg_net = vgg16_bn_drop(images, program, init_program)
predict = layers.fc(input=vgg_net,
size=classdim,
act='softmax',
program=program,
init_program=init_program)
cost = layers.cross_entropy(
input=predict, label=label, program=program, init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 128
PASS_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
exe.run(init_program, feed={}, fetch_list=[])
for pass_id in range(PASS_NUM):
batch_id = 0
for data in train_reader():
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
batch_size = 1
for i in y_data.shape:
batch_size = batch_size * i
y_data = y_data.reshape([batch_size, 1])
tensor_img = core.LoDTensor()
tensor_y = core.LoDTensor()
tensor_img.set(img_data, place)
tensor_y.set(y_data, place)
outs = exe.run(program,
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost])
loss = np.array(outs[0])
# print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) +
# " loss:" + str(loss))
batch_id = batch_id + 1
if batch_id > 1:
# this model is slow, so if we can train two mini batch, we think it works properly.
exit(0)
exit(1)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册