pybind.cc 20.6 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
29
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
30
#include "paddle/operators/cond_op.h"
31
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
32
#include "paddle/operators/net_op.h"
Q
qijun 已提交
33
#include "paddle/platform/enforce.h"
Q
qijun 已提交
34
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
35
#include "paddle/pybind/exception.h"
Q
qijun 已提交
36
#include "paddle/pybind/pybind.h"
37
#include "paddle/pybind/tensor_py.h"
38
#include "paddle/string/to_string.h"
39

D
Dong Zhihong 已提交
40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
42
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
43 44
#endif

45
namespace paddle {
46
namespace pybind {
47 48 49
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
50 51
}

Q
QI JUN 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
70
bool IsCompileGPU() {
71
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
72 73 74 75 76 77
  return false;
#else
  return true;
#endif
}

78
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
79
  py::module m("core", "C++ core of PaddlePaddle");
80

81 82 83 84
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
85 86
  BindException(m);

87 88 89
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
90
      .def("get_dims",
91
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
92
      .def("set_dims",
Q
qijun 已提交
93
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
94
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
95 96
           })
      .def("alloc_float",
Y
Yu Yang 已提交
97
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
98
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
99
           })
Q
qijun 已提交
100
      .def("alloc_float",
Y
Yu Yang 已提交
101
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
102
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
103 104
           })
      .def("alloc_int",
Y
Yu Yang 已提交
105
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
106
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
107
           })
Q
qijun 已提交
108
      .def("alloc_int",
Y
Yu Yang 已提交
109
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
110
             self.mutable_data<int>(place);
Q
qijun 已提交
111
           })
Y
Yu Yang 已提交
112 113
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
114
      .def("set", PyCPUTensorSetFromArray<double>)
115
      .def("set", PyCPUTensorSetFromArray<int64_t>)
116
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
117 118
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
119
      .def("set", PyCUDATensorSetFromArray<double>)
120
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
121
#endif
122
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
123 124 125 126 127
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
128

129
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
130 131
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
132 133 134
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
135
#ifndef PADDLE_WITH_CUDA
136
            new (&instance) LoDTensor(lod);
137
#else
Y
Yu Yang 已提交
138
             LoD new_lod;
139 140
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
141
             new (&instance) LoDTensor(new_lod);
142
#endif
143
          })
Y
Yu Yang 已提交
144
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
145
      .def("set_lod",
146
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
147
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
148
             self.set_lod(lod);
149
#else
Y
Yu Yang 已提交
150
             LoD new_lod;
151 152 153 154
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
155
           })
156
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
157
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
158
        return self.lod();
159 160 161 162 163
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
164
               [](Vector<size_t> item) ->
165 166 167 168 169 170 171 172
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
173 174
      });

Q
qijun 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
188 189 190 191 192 193 194 195 196
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
197 198 199 200 201 202 203 204 205 206 207
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
208

209
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
210 211 212

All parameter, weight, gradient are variables in Paddle.
)DOC")
213
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
214
      .def("set_int",
215 216
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
217 218 219 220 221 222 223
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
224
      .def("get_tensor",
225 226
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
227 228
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
229 230 231
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
232 233 234 235 236
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
237 238 239
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
240 241 242 243 244 245 246
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
247
      .def("get_net",
D
dongzhihong 已提交
248 249
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
250
           },
Y
Yu Yang 已提交
251
           py::return_value_policy::reference);
252

253
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
254
      .def("var",
255
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
256
             return self.Var(name);
Y
Yu Yang 已提交
257
           },
258
           py::return_value_policy::reference)
259
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
260
      .def(py::init<>())
261
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
262
           py::return_value_policy::reference)
Y
Yu Yang 已提交
263
      .def("drop_kids", &Scope::DropKids);
264

Y
Yu Yang 已提交
265 266
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
267 268
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
269 270 271 272 273 274 275 276 277 278
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
279 280
    return ret_values;
  });
281 282 283 284
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
285
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
286 287 288 289 290
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
291 292 293
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
294 295
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
296
  // clang-format off
Y
Yu Yang 已提交
297
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
298 299
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
300
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
301 302 303 304 305
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
306
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
307
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
308
#else
Q
qijun 已提交
309
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
310
#endif
Q
qijun 已提交
311
                  });
D
Dong Zhihong 已提交
312
// clang-format on
Q
qijun 已提交
313

D
Dong Zhihong 已提交
314 315 316
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
317 318 319
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
320

321 322 323
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
324

Y
Yu Yang 已提交
325 326 327 328 329 330 331 332 333 334 335
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
345
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
346 347 348 349 350 351
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
352
      .def("run",
353
           [](OperatorBase &self, const Scope &scope,
354 355 356 357
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
358 359 360 361 362 363 364
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
365 366
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
367
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
368
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
369 370 371 372
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
373

Y
Yu Yang 已提交
374 375 376 377 378 379 380
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
381 382
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
383 384 385 386
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

438 439 440 441 442 443 444 445 446 447
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
448
                    auto rnn_op = OpRegistry::CreateOp(desc);
449 450 451
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
452
      .def("set_step_unit",
453
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
454
               -> void { self.rnn.SetStepUnit(net.Clone()); })
455 456
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
457
               -> const TensorArray & { return self.rnn.state(name); })
458 459
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
460
               -> const TensorArray & { return self.rnn.step_input(name); })
461 462
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
463
               -> const TensorArray & { return self.rnn.step_output(name); });
464

Z
cond op  
zchen0211 已提交
465 466 467 468 469 470 471 472 473 474
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
475
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
476 477 478 479 480 481 482 483 484 485 486
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
487 488
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
489
      .def("run", &Executor::Run);
F
fengjiayi 已提交
490

491
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
492
  m.def("init_gflags", InitGflags);
493

Q
qijun 已提交
494
  m.def("is_compile_gpu", IsCompileGPU);
495
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
496
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
497

F
fengjiayi 已提交
498 499 500 501
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
502

Y
Yu Yang 已提交
503 504 505 506 507 508 509 510 511
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
529
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
530
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
531
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
532
#endif
Y
Yu Yang 已提交
533

534
  return m.ptr();
L
Luo Tao 已提交
535
}
536
}  // namespace pybind
537
}  // namespace paddle