sequence_conv_op.h 6.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
18
#include "paddle/operators/math/context_project.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/math_function.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename Place, typename T>
C
chengduoZH 已提交
28
class SequenceConvKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
C
chengduoZH 已提交
33
    auto filter = *context.Input<Tensor>("Filter");
34

C
chengduoZH 已提交
35
    out->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
36
    context.ShareLoD("X", "Out");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39 40 41
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
42 43 44 45

    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");

C
chengduoZH 已提交
46
    const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
47
    if (padding_trainable) {
C
chengduoZH 已提交
48
      padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
49 50 51 52
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
53
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    framework::DDim col_shape = {in->dims()[0],
C
chengduoZH 已提交
56
                                 context_length * sequence_width};
C
chengduoZH 已提交
57
    Tensor col;
C
chengduoZH 已提交
58 59
    col.mutable_data<T>(col_shape, context.GetPlace());
    // Because if padding_trainable is false, padding data should be zeros.
C
chengduoZH 已提交
60
    math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
61
    set_zero(context.device_context(), &col, static_cast<T>(0));
62

C
chengduoZH 已提交
63
    math::ContextProjectFunctor<Place, T> seq_project_functor;
64

C
sss  
chengduoZH 已提交
65
    seq_project_functor(context.device_context(), *in, *padding_data, col,
C
chengduoZH 已提交
66
                        padding_trainable, context_start, context_length,
C
sss  
chengduoZH 已提交
67
                        context_stride, up_pad, down_pad);
68

C
chengduoZH 已提交
69
    math::matmul<Place, T>(context.device_context(), col, false, filter, false,
C
chengduoZH 已提交
70
                           static_cast<T>(1.0), out, static_cast<T>(0.0));
C
chengduoZH 已提交
71 72 73 74
  }
};

template <typename Place, typename T>
C
chengduoZH 已提交
75
class SequenceConvGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
76 77 78
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
79
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
80
    auto* filter_g = context.Output<Tensor>(framework::GradVarName("Filter"));
C
chengduoZH 已提交
81
    auto* padding_data_g =
C
chengduoZH 已提交
82
        context.Output<Tensor>(framework::GradVarName("PaddingData"));
83
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
84
    auto* filter = context.Input<Tensor>("Filter");
C
chengduoZH 已提交
85

C
chengduoZH 已提交
86 87 88 89
    int context_start = context.Attr<int>("contextStart");
    int context_length = context.Attr<int>("contextLength");
    int context_stride = context.Attr<int>("contextStride");
    bool padding_trainable = context.Attr<bool>("paddingTrainable");
C
chengduoZH 已提交
90

91
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
92
                      "Only support one level sequence now.");
93
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
94

C
chengduoZH 已提交
95 96
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
97
    int sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
98

C
chengduoZH 已提交
99
    math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
100 101 102
    // use col_shape in the im2col calculation
    framework::DDim col_shape = {in->dims()[0],
                                 sequence_width * context_length};
C
chengduoZH 已提交
103
    Tensor col;
C
chengduoZH 已提交
104 105 106 107

    if (in_g || filter_g || (padding_trainable && padding_data_g)) {
      col.mutable_data<T>(col_shape, context.GetPlace());
      // Because if padding_trainable is false, padding data should be zeros.
C
chengduoZH 已提交
108
      set_zero(context.device_context(), &col, static_cast<T>(0));
C
chengduoZH 已提交
109 110 111
      math::matmul<Place, T>(context.device_context(), *out_g, false, *filter,
                             true, T(1.0), &col, T(1.0));
    }
C
chengduoZH 已提交
112 113
    math::ContextProjectFunctor<Place, T> seq_project_functor;
    math::ContextProjectGradFunctor<Place, T> seq_project_grad_functor;
C
chengduoZH 已提交
114

C
chengduoZH 已提交
115 116
    if (in_g) {
      in_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
117
      in_g->set_lod(in->lod());
C
chengduoZH 已提交
118
      set_zero(context.device_context(), in_g, static_cast<T>(0));
119

C
sss  
chengduoZH 已提交
120 121 122 123
      seq_project_grad_functor(context.device_context(), *in_g, *padding_data_g,
                               col, padding_trainable, context_start,
                               context_length, context_stride, up_pad, down_pad,
                               true, false);
C
chengduoZH 已提交
124 125 126 127
    }

    if (padding_trainable && padding_data_g) {
      padding_data_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
128
      set_zero(context.device_context(), padding_data_g, static_cast<T>(0));
C
chengduoZH 已提交
129

C
chengduoZH 已提交
130
      LoDTensor* input = const_cast<LoDTensor*>(in);
C
sss  
chengduoZH 已提交
131 132 133 134
      seq_project_grad_functor(context.device_context(), *input,
                               *padding_data_g, col, padding_trainable,
                               context_start, context_length, context_stride,
                               up_pad, down_pad, false, true);
C
chengduoZH 已提交
135
    }
C
chengduoZH 已提交
136 137 138

    if (filter_g) {
      filter_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
139
      set_zero(context.device_context(), filter_g, static_cast<T>(0));
C
chengduoZH 已提交
140

C
chengduoZH 已提交
141 142
      Tensor filter_grad = *filter_g;
      LoDTensor out_grad = *out_g;
C
chengduoZH 已提交
143

C
chengduoZH 已提交
144
      const Tensor* padding_data = nullptr;
C
chengduoZH 已提交
145
      if (padding_trainable) {
C
chengduoZH 已提交
146
        padding_data = context.Input<Tensor>("PaddingData");
C
chengduoZH 已提交
147 148
      }

C
sss  
chengduoZH 已提交
149
      seq_project_functor(context.device_context(), *in, *padding_data, col,
C
chengduoZH 已提交
150
                          padding_trainable, context_start, context_length,
C
sss  
chengduoZH 已提交
151
                          context_stride, up_pad, down_pad);
C
chengduoZH 已提交
152

C
chengduoZH 已提交
153 154
      math::matmul<Place, T>(context.device_context(), col, true, out_grad,
                             false, T(1.0), &filter_grad, T(1.0));
C
chengduoZH 已提交
155
    }
C
chengduoZH 已提交
156 157 158 159 160
  }
};

}  // namespace operators
}  // namespace paddle