gru_gpu_kernel.h 7.0 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <type_traits>
17
#include "paddle/operators/math/detail/activation_functions.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "paddle/operators/math/gru_compute.h"
#include "paddle/platform/cuda_helper.h"
#include "paddle/platform/device_context.h"

#include <glog/logging.h>

namespace paddle {
namespace operators {
namespace math {
namespace detail {

/*
 * threads(framePerBlock, batchPerBlock)
 * grid(frameBlocks, batchBlocks)
 */
template <class OpResetOutput, bool isBatch, typename T>
__global__ void KeGruForwardResetOutput(OpResetOutput opResetOutput,
                                        T *gateValue, T *resetOutputValue,
                                        T *prevOutputValue, int frameSize,
                                        int batchSize,
                                        activation_mode_t active_gate) {
  const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x;
  if (frameIdx >= frameSize) return;

  int batchIdx = 0;
  if (isBatch) {
    batchIdx = blockIdx.y * blockDim.y + threadIdx.y;
    if (batchIdx >= batchSize) return;
    gateValue += batchIdx * 3 * frameSize;
    resetOutputValue += batchIdx * frameSize;
  }

  T rPrevOut = 0;
  T rValueResetOutput;
  T rValueUpdateGate = gateValue[frameIdx + frameSize * 0];
  T rValueResetGate = gateValue[frameIdx + frameSize * 1];

  if (prevOutputValue) {
    if (isBatch) prevOutputValue += batchIdx * frameSize;
    rPrevOut = prevOutputValue[frameIdx];
  }

  opResetOutput(rValueUpdateGate, rValueResetGate, rPrevOut, rValueResetOutput,
61
                active_gate);
G
guosheng 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

  gateValue[frameIdx + frameSize * 0] = rValueUpdateGate;
  gateValue[frameIdx + frameSize * 1] = rValueResetGate;
  resetOutputValue[frameIdx] = rValueResetOutput;
}

/*
 * threads(framePerBlock, batchPerBlock)
 * grid(frameBlocks, batchBlocks)
 */
template <class OpFinalOutput, bool isBatch, typename T>
__global__ void KeGruForwardFinalOutput(OpFinalOutput opFinalOutput,
                                        T *gateValue, T *prevOutputValue,
                                        T *outputValue, int frameSize,
                                        int batchSize,
                                        activation_mode_t active_node) {
  const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x;
  if (frameIdx >= frameSize) return;
  int batchIdx = 0;
  if (isBatch) {
    batchIdx = blockIdx.y * blockDim.y + threadIdx.y;
    if (batchIdx >= batchSize) return;
    gateValue += batchIdx * 3 * frameSize;
    outputValue += batchIdx * frameSize;
  }

  T rOutput;
  T rPrevOut = 0;
  T rValueUpdateGate = gateValue[frameIdx + frameSize * 0];
  T rValueFrameState = gateValue[frameIdx + frameSize * 2];

  if (prevOutputValue) {
    if (isBatch) prevOutputValue += batchIdx * frameSize;
    rPrevOut = prevOutputValue[frameIdx];
  }

  opFinalOutput(rValueUpdateGate, rValueFrameState, rPrevOut, rOutput,
99
                active_node);
G
guosheng 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  gateValue[frameIdx + frameSize * 2] = rValueFrameState;
  outputValue[frameIdx] = rOutput;
}

/*
 * threads(framePerBlock, batchPerBlock)
 * grid(frameBlocks, batchBlocks)
 */
template <class OpStateGrad, bool isBatch, typename T>
__global__ void KeGruBackwardStateGrad(OpStateGrad opStateGrad, T *gateValue,
                                       T *gateGrad, T *prevOutValue,
                                       T *prevOutGrad, T *outputGrad,
                                       int frameSize, int batchSize,
                                       activation_mode_t active_node) {
  const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x;
  if (frameIdx >= frameSize) return;
  int batchIdx = 0;
  if (isBatch) {
    batchIdx = blockIdx.y * blockDim.y + threadIdx.y;
    if (batchIdx >= batchSize) return;
    gateValue += batchIdx * 3 * frameSize;
    gateGrad += batchIdx * 3 * frameSize;
    outputGrad += batchIdx * frameSize;
  }

  T rUpdateGateGrad;
  T rFrameStateGrad;
  T rPrevOutValue = 0;
  T rPrevOutGrad = 0;
  T rUpdateGateValue = gateValue[frameIdx + frameSize * 0];
  T rFrameStateValue = gateValue[frameIdx + frameSize * 2];
  T rOutGrad = outputGrad[frameIdx];

  if (prevOutValue && prevOutGrad) {
    if (isBatch) prevOutValue += batchIdx * frameSize;
    rPrevOutValue = prevOutValue[frameIdx];

    if (isBatch) prevOutGrad += batchIdx * frameSize;
    rPrevOutGrad = prevOutGrad[frameIdx];
  }

  opStateGrad(rUpdateGateValue, rUpdateGateGrad, rFrameStateValue,
              rFrameStateGrad, rPrevOutValue, rPrevOutGrad, rOutGrad,
144
              active_node);
G
guosheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

  gateGrad[frameIdx + frameSize * 0] = rUpdateGateGrad;
  gateGrad[frameIdx + frameSize * 2] = rFrameStateGrad;
  if (prevOutGrad) {
    prevOutGrad[frameIdx] = rPrevOutGrad;
  }
}

/*
 * threads(framePerBlock, batchPerBlock)
 * grid(frameBlocks, batchBlocks)
 */
template <class OpResetGrad, bool isBatch, typename T>
__global__ void KeGruBackwardResetGrad(OpResetGrad opResetGrad, T *gateValue,
                                       T *gateGrad, T *prevOutValue,
                                       T *prevOutGrad, T *resetOutputGrad,
                                       int frameSize, int batchSize,
                                       activation_mode_t active_gate) {
  const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x;
  if (frameIdx >= frameSize) return;
  int batchIdx = 0;
  if (isBatch) {
    batchIdx = blockIdx.y * blockDim.y + threadIdx.y;
    if (batchIdx >= batchSize) return;
    gateValue += batchIdx * 3 * frameSize;
    gateGrad += batchIdx * 3 * frameSize;
    resetOutputGrad += batchIdx * frameSize;
  }

  T rResetGateGrad;
  T rPrevOutValue = 0;
  T rPrevOutGrad = 0;
  T rResetOutputGrad = 0;
  T rUpdateGateValue = gateValue[frameIdx + frameSize * 0];
  T rUpdateGateGrad = gateGrad[frameIdx + frameSize * 0];
  T rResetGateValue = gateValue[frameIdx + frameSize * 1];

  if (prevOutValue && prevOutGrad) {
    if (isBatch) prevOutValue += batchIdx * frameSize;
    if (isBatch) prevOutGrad += batchIdx * frameSize;
    rPrevOutValue = prevOutValue[frameIdx];
    rPrevOutGrad = prevOutGrad[frameIdx];
    rResetOutputGrad = resetOutputGrad[frameIdx];
  }

  opResetGrad(rUpdateGateValue, rUpdateGateGrad, rResetGateValue,
              rResetGateGrad, rPrevOutValue, rPrevOutGrad, rResetOutputGrad,
192
              active_gate);
G
guosheng 已提交
193 194 195 196 197 198 199 200 201 202 203

  gateGrad[frameIdx + frameSize * 0] = rUpdateGateGrad;
  gateGrad[frameIdx + frameSize * 1] = rResetGateGrad;
  if (prevOutGrad) {
    prevOutGrad[frameIdx] = rPrevOutGrad;
  }
}
}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle