yolo_head.py 16.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19 20 21
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register

F
Feng Ni 已提交
22 23 24 25 26 27 28
import math
import numpy as np
from ..initializer import bias_init_with_prob, constant_
from ..backbones.csp_darknet import BaseConv, DWConv
from ..losses import IouLoss
from ppdet.modeling.assigners.simota_assigner import SimOTAAssigner
from ppdet.modeling.bbox_utils import bbox_overlaps
29
from ppdet.modeling.layers import MultiClassNMS
F
Feng Ni 已提交
30 31 32

__all__ = ['YOLOv3Head', 'YOLOXHead']

Q
qingqing01 已提交
33

W
wangxinxin08 已提交
34 35 36 37 38 39 40
def _de_sigmoid(x, eps=1e-7):
    x = paddle.clip(x, eps, 1. / eps)
    x = paddle.clip(1. / x - 1., eps, 1. / eps)
    x = -paddle.log(x)
    return x


Q
qingqing01 已提交
41 42
@register
class YOLOv3Head(nn.Layer):
43
    __shared__ = ['num_classes', 'data_format']
Q
qingqing01 已提交
44 45 46
    __inject__ = ['loss']

    def __init__(self,
K
Kaipeng Deng 已提交
47
                 in_channels=[1024, 512, 256],
Q
qingqing01 已提交
48 49 50 51
                 anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                          [59, 119], [116, 90], [156, 198], [373, 326]],
                 anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                 num_classes=80,
W
wangxinxin08 已提交
52 53
                 loss='YOLOv3Loss',
                 iou_aware=False,
54 55
                 iou_aware_factor=0.4,
                 data_format='NCHW'):
W
wangxinxin08 已提交
56 57 58 59 60 61 62 63 64 65 66 67
        """
        Head for YOLOv3 network

        Args:
            num_classes (int): number of foreground classes
            anchors (list): anchors
            anchor_masks (list): anchor masks
            loss (object): YOLOv3Loss instance
            iou_aware (bool): whether to use iou_aware
            iou_aware_factor (float): iou aware factor
            data_format (str): data format, NCHW or NHWC
        """
Q
qingqing01 已提交
68
        super(YOLOv3Head, self).__init__()
K
Kaipeng Deng 已提交
69 70
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
Q
qingqing01 已提交
71 72 73
        self.num_classes = num_classes
        self.loss = loss

W
wangxinxin08 已提交
74 75 76
        self.iou_aware = iou_aware
        self.iou_aware_factor = iou_aware_factor

Q
qingqing01 已提交
77 78
        self.parse_anchor(anchors, anchor_masks)
        self.num_outputs = len(self.anchors)
79
        self.data_format = data_format
Q
qingqing01 已提交
80 81 82

        self.yolo_outputs = []
        for i in range(len(self.anchors)):
W
wangxinxin08 已提交
83

W
wangxinxin08 已提交
84
            if self.iou_aware:
W
wangxinxin08 已提交
85
                num_filters = len(self.anchors[i]) * (self.num_classes + 6)
W
wangxinxin08 已提交
86
            else:
W
wangxinxin08 已提交
87
                num_filters = len(self.anchors[i]) * (self.num_classes + 5)
Q
qingqing01 已提交
88
            name = 'yolo_output.{}'.format(i)
G
Guanghua Yu 已提交
89
            conv = nn.Conv2D(
K
Kaipeng Deng 已提交
90
                in_channels=self.in_channels[i],
G
Guanghua Yu 已提交
91 92 93 94 95 96 97 98
                out_channels=num_filters,
                kernel_size=1,
                stride=1,
                padding=0,
                data_format=data_format,
                bias_attr=ParamAttr(regularizer=L2Decay(0.)))
            conv.skip_quant = True
            yolo_output = self.add_sublayer(name, conv)
Q
qingqing01 已提交
99 100 101 102 103 104 105 106 107 108 109 110
            self.yolo_outputs.append(yolo_output)

    def parse_anchor(self, anchors, anchor_masks):
        self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks]
        self.mask_anchors = []
        anchor_num = len(anchors)
        for masks in anchor_masks:
            self.mask_anchors.append([])
            for mask in masks:
                assert mask < anchor_num, "anchor mask index overflow"
                self.mask_anchors[-1].extend(anchors[mask])

111
    def forward(self, feats, targets=None):
Q
qingqing01 已提交
112 113 114 115
        assert len(feats) == len(self.anchors)
        yolo_outputs = []
        for i, feat in enumerate(feats):
            yolo_output = self.yolo_outputs[i](feat)
116 117
            if self.data_format == 'NHWC':
                yolo_output = paddle.transpose(yolo_output, [0, 3, 1, 2])
Q
qingqing01 已提交
118 119
            yolo_outputs.append(yolo_output)

120 121
        if self.training:
            return self.loss(yolo_outputs, targets, self.anchors)
W
wangxinxin08 已提交
122
        else:
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
            if self.iou_aware:
                y = []
                for i, out in enumerate(yolo_outputs):
                    na = len(self.anchors[i])
                    ioup, x = out[:, 0:na, :, :], out[:, na:, :, :]
                    b, c, h, w = x.shape
                    no = c // na
                    x = x.reshape((b, na, no, h * w))
                    ioup = ioup.reshape((b, na, 1, h * w))
                    obj = x[:, :, 4:5, :]
                    ioup = F.sigmoid(ioup)
                    obj = F.sigmoid(obj)
                    obj_t = (obj**(1 - self.iou_aware_factor)) * (
                        ioup**self.iou_aware_factor)
                    obj_t = _de_sigmoid(obj_t)
                    loc_t = x[:, :, :4, :]
                    cls_t = x[:, :, 5:, :]
                    y_t = paddle.concat([loc_t, obj_t, cls_t], axis=2)
                    y_t = y_t.reshape((b, c, h, w))
                    y.append(y_t)
                return y
            else:
                return yolo_outputs
K
Kaipeng Deng 已提交
146 147 148 149

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }
F
Feng Ni 已提交
150 151 152 153


@register
class YOLOXHead(nn.Layer):
154
    __shared__ = ['num_classes', 'width_mult', 'act', 'trt', 'exclude_nms']
F
Feng Ni 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
    __inject__ = ['assigner', 'nms']

    def __init__(self,
                 num_classes=80,
                 width_mult=1.0,
                 depthwise=False,
                 in_channels=[256, 512, 1024],
                 feat_channels=256,
                 fpn_strides=(8, 16, 32),
                 l1_epoch=285,
                 act='silu',
                 assigner=SimOTAAssigner(use_vfl=False),
                 nms='MultiClassNMS',
168 169 170 171 172 173 174 175
                 loss_weight={
                     'cls': 1.0,
                     'obj': 1.0,
                     'iou': 5.0,
                     'l1': 1.0,
                 },
                 trt=False,
                 exclude_nms=False):
F
Feng Ni 已提交
176 177 178 179 180 181 182 183 184 185
        super(YOLOXHead, self).__init__()
        self._dtype = paddle.framework.get_default_dtype()
        self.num_classes = num_classes
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        feat_channels = int(feat_channels * width_mult)
        self.fpn_strides = fpn_strides
        self.l1_epoch = l1_epoch
        self.assigner = assigner
        self.nms = nms
186 187 188
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
        self.exclude_nms = exclude_nms
F
Feng Ni 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        self.loss_weight = loss_weight
        self.iou_loss = IouLoss(loss_weight=1.0)  # default loss_weight 2.5

        ConvBlock = DWConv if depthwise else BaseConv

        self.stem_conv = nn.LayerList()
        self.conv_cls = nn.LayerList()
        self.conv_reg = nn.LayerList()  # reg [x,y,w,h] + obj
        for in_c in self.in_channels:
            self.stem_conv.append(BaseConv(in_c, feat_channels, 1, 1, act=act))

            self.conv_cls.append(
                nn.Sequential(* [
                    ConvBlock(
                        feat_channels, feat_channels, 3, 1, act=act), ConvBlock(
                            feat_channels, feat_channels, 3, 1, act=act),
                    nn.Conv2D(
                        feat_channels,
                        self.num_classes,
                        1,
                        bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
                ]))

            self.conv_reg.append(
                nn.Sequential(* [
                    ConvBlock(
                        feat_channels, feat_channels, 3, 1, act=act),
                    ConvBlock(
                        feat_channels, feat_channels, 3, 1, act=act),
                    nn.Conv2D(
                        feat_channels,
                        4 + 1,  # reg [x,y,w,h] + obj
                        1,
                        bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
                ]))

        self._init_weights()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        bias_reg = paddle.full([5], math.log(5.), dtype=self._dtype)
        bias_reg[:2] = 0.
        bias_reg[-1] = bias_cls
        for cls_, reg_ in zip(self.conv_cls, self.conv_reg):
            constant_(cls_[-1].weight)
            constant_(cls_[-1].bias, bias_cls)
            constant_(reg_[-1].weight)
            reg_[-1].bias.set_value(bias_reg)

    def _generate_anchor_point(self, feat_sizes, strides, offset=0.):
        anchor_points, stride_tensor = [], []
        num_anchors_list = []
        for feat_size, stride in zip(feat_sizes, strides):
            h, w = feat_size
            x = (paddle.arange(w) + offset) * stride
            y = (paddle.arange(h) + offset) * stride
            y, x = paddle.meshgrid(y, x)
            anchor_points.append(paddle.stack([x, y], axis=-1).reshape([-1, 2]))
            stride_tensor.append(
                paddle.full(
                    [len(anchor_points[-1]), 1], stride, dtype=self._dtype))
            num_anchors_list.append(len(anchor_points[-1]))
        anchor_points = paddle.concat(anchor_points).astype(self._dtype)
        anchor_points.stop_gradient = True
        stride_tensor = paddle.concat(stride_tensor)
        stride_tensor.stop_gradient = True
        return anchor_points, stride_tensor, num_anchors_list

    def forward(self, feats, targets=None):
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        feat_sizes = [[f.shape[-2], f.shape[-1]] for f in feats]
        cls_score_list, reg_pred_list = [], []
        obj_score_list = []
        for i, feat in enumerate(feats):
            feat = self.stem_conv[i](feat)
            cls_logit = self.conv_cls[i](feat)
            reg_pred = self.conv_reg[i](feat)
            # cls prediction
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            # reg prediction
            reg_xywh, obj_logit = paddle.split(reg_pred, [4, 1], axis=1)
            reg_xywh = reg_xywh.flatten(2).transpose([0, 2, 1])
            reg_pred_list.append(reg_xywh)
            # obj prediction
            obj_score = F.sigmoid(obj_logit)
            obj_score_list.append(obj_score.flatten(2).transpose([0, 2, 1]))

        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_pred_list = paddle.concat(reg_pred_list, axis=1)
        obj_score_list = paddle.concat(obj_score_list, axis=1)

        # bbox decode
        anchor_points, stride_tensor, _ =\
            self._generate_anchor_point(feat_sizes, self.fpn_strides)
        reg_xy, reg_wh = paddle.split(reg_pred_list, 2, axis=-1)
        reg_xy += (anchor_points / stride_tensor)
        reg_wh = paddle.exp(reg_wh) * 0.5
        bbox_pred_list = paddle.concat(
            [reg_xy - reg_wh, reg_xy + reg_wh], axis=-1)

        if self.training:
            anchor_points, stride_tensor, num_anchors_list =\
                self._generate_anchor_point(feat_sizes, self.fpn_strides, 0.5)
            yolox_losses = self.get_loss([
                cls_score_list, bbox_pred_list, obj_score_list, anchor_points,
                stride_tensor, num_anchors_list
            ], targets)
            return yolox_losses
        else:
            pred_scores = (cls_score_list * obj_score_list).sqrt()
            return pred_scores, bbox_pred_list, stride_tensor

    def get_loss(self, head_outs, targets):
        pred_cls, pred_bboxes, pred_obj,\
        anchor_points, stride_tensor, num_anchors_list = head_outs
        gt_labels = targets['gt_class']
        gt_bboxes = targets['gt_bbox']
        pred_scores = (pred_cls * pred_obj).sqrt()
        # label assignment
        center_and_strides = paddle.concat(
            [anchor_points, stride_tensor, stride_tensor], axis=-1)
        pos_num_list, label_list, bbox_target_list = [], [], []
        for pred_score, pred_bbox, gt_box, gt_label in zip(
                pred_scores.detach(),
                pred_bboxes.detach() * stride_tensor, gt_bboxes, gt_labels):
            pos_num, label, _, bbox_target = self.assigner(
                pred_score, center_and_strides, pred_bbox, gt_box, gt_label)
            pos_num_list.append(pos_num)
            label_list.append(label)
            bbox_target_list.append(bbox_target)
        labels = paddle.to_tensor(np.stack(label_list, axis=0))
        bbox_targets = paddle.to_tensor(np.stack(bbox_target_list, axis=0))
        bbox_targets /= stride_tensor  # rescale bbox

        # 1. obj score loss
        mask_positive = (labels != self.num_classes)
        loss_obj = F.binary_cross_entropy(
            pred_obj,
            mask_positive.astype(pred_obj.dtype).unsqueeze(-1),
            reduction='sum')

        num_pos = sum(pos_num_list)

        if num_pos > 0:
            num_pos = paddle.to_tensor(num_pos, dtype=self._dtype).clip(min=1)
            loss_obj /= num_pos

            # 2. iou loss
            bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
            pred_bboxes_pos = paddle.masked_select(pred_bboxes,
                                                   bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = paddle.masked_select(
                bbox_targets, bbox_mask).reshape([-1, 4])
            bbox_iou = bbox_overlaps(pred_bboxes_pos, assigned_bboxes_pos)
            bbox_iou = paddle.diag(bbox_iou)

            loss_iou = self.iou_loss(
                pred_bboxes_pos.split(
                    4, axis=-1),
                assigned_bboxes_pos.split(
                    4, axis=-1))
            loss_iou = loss_iou.sum() / num_pos

            # 3. cls loss
            cls_mask = mask_positive.unsqueeze(-1).tile(
                [1, 1, self.num_classes])
            pred_cls_pos = paddle.masked_select(
                pred_cls, cls_mask).reshape([-1, self.num_classes])
            assigned_cls_pos = paddle.masked_select(labels, mask_positive)
            assigned_cls_pos = F.one_hot(assigned_cls_pos,
                                         self.num_classes + 1)[..., :-1]
            assigned_cls_pos *= bbox_iou.unsqueeze(-1)
            loss_cls = F.binary_cross_entropy(
                pred_cls_pos, assigned_cls_pos, reduction='sum')
            loss_cls /= num_pos

            # 4. l1 loss
            if targets['epoch_id'] >= self.l1_epoch:
                loss_l1 = F.l1_loss(
                    pred_bboxes_pos, assigned_bboxes_pos, reduction='sum')
                loss_l1 /= num_pos
            else:
                loss_l1 = paddle.zeros([1])
                loss_l1.stop_gradient = False
        else:
            loss_cls = paddle.zeros([1])
            loss_iou = paddle.zeros([1])
            loss_l1 = paddle.zeros([1])
            loss_cls.stop_gradient = False
            loss_iou.stop_gradient = False
            loss_l1.stop_gradient = False

        loss = self.loss_weight['obj'] * loss_obj + \
               self.loss_weight['cls'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou

        if targets['epoch_id'] >= self.l1_epoch:
            loss += (self.loss_weight['l1'] * loss_l1)

        yolox_losses = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_obj': loss_obj,
            'loss_iou': loss_iou,
            'loss_l1': loss_l1,
        }
        return yolox_losses

    def post_process(self, head_outs, img_shape, scale_factor):
        pred_scores, pred_bboxes, stride_tensor = head_outs
        pred_scores = pred_scores.transpose([0, 2, 1])
        pred_bboxes *= stride_tensor
        # scale bbox to origin image
        scale_factor = scale_factor.flip(-1).tile([1, 2]).unsqueeze(1)
        pred_bboxes /= scale_factor
411 412 413 414 415 416
        if self.exclude_nms:
            # `exclude_nms=True` just use in benchmark
            return pred_bboxes.sum(), pred_scores.sum()
        else:
            bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
            return bbox_pred, bbox_num