layers.py 224.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
Q
qijun 已提交
145
]
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152


class LayerType(object):
    """
    Layer type enumerations.
    """

153 154 155 156 157 158 159 160
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
161
    POOLING_AVG = 'average'
162
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
163
    COST = 'cost'
164 165
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
166
    HSIGMOID = 'hsigmoid'
167 168 169 170 171
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
172
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
173
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
174
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
175 176 177
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
178
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
179 180 181 182
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
183
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
184 185 186 187 188 189 190

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
191
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
192 193 194
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
195
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
196
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
197
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
198 199 200 201 202 203 204 205 206 207 208

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
209
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
210
    BLOCK_EXPAND = "blockexpand"
211
    MAXOUT = "maxout"
Q
qijun 已提交
212
    SPP_LAYER = "spp"
D
dangqingqing 已提交
213
    PAD_LAYER = "pad"
W
wwhu 已提交
214
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
215
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
216 217 218

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
219 220
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
221 222 223 224 225

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
226
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
227

228 229 230
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

231 232
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
233
    HUBER_REGRESSION = 'huber_regression'
234
    HUBER_CLASSIFICATION = 'huber_classification'
235 236
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
237
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
238 239 240 241 242 243
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
244
    SWITCH_ORDER_LAYER = 'switch_order'
245
    CROP_LAYER = 'crop'
C
caoying03 已提交
246
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
247
    CLIP_LAYER = 'clip'
248
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
249

250
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
251
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
273
    """
L
Luo Tao 已提交
274
    PaddlePaddle supports three sequence types:
275 276 277

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
278 279
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
280

L
Luo Tao 已提交
281
    Accordingly, AggregateLevel supports two modes:
282

L
Luo Tao 已提交
283
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
284
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
285 286
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
287
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
288 289 290
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
291 292
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
293 294 295
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
318
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
319 320
    """

Q
qijun 已提交
321 322 323 324 325 326 327 328 329
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
330
                 reverse=None):
Z
zhangjinchao01 已提交
331 332
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
333
        assert size is not None
Z
zhangjinchao01 已提交
334 335
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
336
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
337
        self.layer_type = layer_type
338 339
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
340 341 342 343 344 345 346 347
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
348
        self.reverse = reverse
Z
zhangjinchao01 已提交
349

350 351 352 353 354 355 356 357
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

358 359 360 361
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

362 363 364 365 366 367 368 369
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
370 371 372

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
373
DEVICE = 'device'
Z
zhangjinchao01 已提交
374 375 376


def layer_support(*attrs):
377
    attrs_list = list(attrs)
378
    attrs_list.append(DEVICE)
Q
qijun 已提交
379

Z
zhangjinchao01 已提交
380 381 382
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
383
            for attr in attrs_list:
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
400 401 402 403 404
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
444 445
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
446 447 448 449
    proj.origin = input
    return proj


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
480 481
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
482 483 484 485
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
525 526
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
527 528 529 530
    proj.origin = input
    return proj


531
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
562
    :type input: LayerOutput
Z
zhangjinchao01 已提交
563 564
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
565
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
566 567 568 569 570 571
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
572 573
        if size is None:
            size = input.size - offset
Q
qijun 已提交
574
        proj = IdentityOffsetProjection(
575
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
576 577 578 579
        proj.origin = input
    return proj


580 581
def slice_projection(input, slices):
    """
582 583
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
584 585

    .. math::
586
       output = [input.slices()]
587 588 589 590 591 592 593 594 595 596 597 598 599 600

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
601
    :type slices: pair of int
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
641
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
642 643 644 645
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
646
@wrap_param_attr_default()
647
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
648
    """
649
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

663 664 665 666 667 668 669
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
670 671
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
672
    proj.origin = input
673
    return proj
Z
zhangjinchao01 已提交
674

675 676

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
677 678
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
679

Z
zhangjinchao01 已提交
680
    .. math::
L
Luo Tao 已提交
681
       out.row[i] += scale * (a.row[i] .* b.row[i])
682

Z
zhangjinchao01 已提交
683 684
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
685

Z
zhangjinchao01 已提交
686
    The example usage is:
687

Z
zhangjinchao01 已提交
688
    .. code-block:: python
689

L
Luo Tao 已提交
690
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
691

692 693 694 695
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
696 697
    :param scale: config scalar, default value is one.
    :type scale: float
698 699
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
700
    """
701 702 703
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
704
    a = kwargs.get('x', a)  # For Backward capacity.
705 706 707 708 709 710
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
711
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
712
    op.origin = [a, b]
713
    return op
Z
zhangjinchao01 已提交
714

715

Z
zhangjinchao01 已提交
716
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
717 718 719
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
756 757 758 759 760 761
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
775
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
784 785 786 787 788
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
        :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
789 790 791
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
792 793 794 795 796 797 798
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
799 800 801 802 803
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

804
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
805 806 807 808 809 810 811 812
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
813
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
814
            self.inputs.append(other)
815 816 817 818
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
819 820 821 822 823 824 825 826
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

827
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
828 829
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
830
        assert len(self.inputs) != 0
831
        ml = MixedLayer(
Z
zhangjinchao01 已提交
832 833 834 835 836
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
837
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
838 839 840
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
841
        self.finalized = True
Z
zhangjinchao01 已提交
842 843 844 845 846 847


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
848 849 850 851 852
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
884 885 886 887 888
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
889 890 891 892 893 894 895 896 897
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
898 899 900 901 902 903
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
904
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
905 906 907 908 909 910 911 912
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
913 914
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
915 916 917 918 919 920 921
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
922
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
923 924 925 926 927

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
928
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
929
    :type height: int|None
L
Luo Tao 已提交
930
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
931
    :type width: int|None
Z
zhangjinchao01 已提交
932 933
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
934
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
935 936
    :rtype: LayerOutput
    """
Q
qijun 已提交
937 938 939 940
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
941
        depth=depth,
L
Luo Tao 已提交
942 943
        height=height,
        width=width,
Q
qijun 已提交
944
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
945

C
chengduoZH 已提交
946 947
    if depth is None:
        depth = 1
948 949
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
950 951
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
952
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
953 954

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
955 956 957 958


@wrap_name_default("embedding")
@wrap_param_attr_default()
959
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
975
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
976 977
    :rtype: LayerOutput
    """
Q
qijun 已提交
978 979 980 981 982 983
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
984 985 986 987 988 989 990 991 992
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
993 994 995 996 997 998 999
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1012
    which is equal to:
Z
zhangjinchao01 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1029 1030 1031 1032 1033
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1034 1035
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1036
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1037 1038 1039 1040
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1041
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1042 1043
        param_attr = [param_attr]
    else:
1044
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1045 1046 1047 1048
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1049
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1050 1051

    Layer(
Q
qijun 已提交
1052 1053 1054
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1055 1056 1057 1058 1059
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1060 1061 1062
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1063

1064

1065
@wrap_name_default("print")
1066
def printer_layer(input, format=None, name=None):
1067 1068
    """
    Print the output value of input layers. This layer is useful for debugging.
1069 1070 1071 1072 1073

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1074
    :return: LayerOutput
1075
    """
1076 1077 1078 1079 1080
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1081 1082 1083

    Layer(
        name=name,
1084
        format=format,
1085
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1086
        inputs=[l.name for l in input], )
1087
    # this layer don't return anything, can not be input of other layer.
1088

X
xuwei06 已提交
1089 1090 1091 1092 1093 1094 1095
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1096

Y
yuan 已提交
1097
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1098
def priorbox_layer(input,
G
gaoyuan 已提交
1099
                   image,
G
gaoyuan 已提交
1100 1101 1102 1103 1104
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1105 1106 1107 1108 1109 1110 1111
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1112 1113
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1125
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1126 1127 1128
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1129
        inputs=[input.name, image.name],
Y
yuan 已提交
1130 1131 1132 1133 1134 1135
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1136 1137
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1138
        parents=[input, image],
G
gaoyuan 已提交
1139 1140 1141
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1159 1160
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1161
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1162
    :type input_conf: LayerOutput | List of LayerOutput
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1184
    input_loc_num = len(input_loc)
1185 1186 1187 1188 1189 1190

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1191
    input_conf_num = len(input_conf)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1229 1230
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1231 1232 1233

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1234 1235
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1236
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1237
    :type input_conf: LayerOutput | List of LayerOutput.
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1259
    input_loc_num = len(input_loc)
1260 1261 1262 1263 1264 1265

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1266 1267
    input_conf_num = len(input_conf)

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1296 1297
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1298 1299 1300 1301 1302
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1303

G
gaoyuan 已提交
1304 1305 1306 1307 1308 1309 1310 1311
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1312
    assert input.num_filters is not None
G
gaoyuan 已提交
1313 1314
    Layer(
        name=name,
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1328 1329
    return LayerOutput(
        name,
1330
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1331 1332 1333 1334 1335
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1336 1337 1338 1339
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1340 1341 1342 1343
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1344
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1345
                  stride=-1,
Z
zhangjinchao01 已提交
1346 1347 1348 1349
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1350 1351
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1352 1353 1354
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1355
    operation. Note that for sequence with sub-sequence, the default value
1356 1357
    of stride is -1.

Z
zhangjinchao01 已提交
1358 1359 1360 1361 1362 1363
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1364
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1365

L
Luo Tao 已提交
1366 1367
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1368 1369 1370 1371 1372 1373 1374 1375
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1376
    :param stride: The step size between successive pooling regions.
1377
    :type stride: Int
1378 1379 1380 1381 1382
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1383 1384
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1385
    :return: LayerOutput object.
Y
Yu Yang 已提交
1386
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1387 1388
    """
    extra_dict = dict()
1389
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1390 1391
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1392 1393 1394 1395
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1396 1397
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1398 1399 1400
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1401 1402 1403 1404 1405 1406
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1407
        stride=stride,
Q
qijun 已提交
1408
        **extra_dict)
Z
zhangjinchao01 已提交
1409

Q
qijun 已提交
1410 1411
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1412

Q
qijun 已提交
1413

Z
zhangjinchao01 已提交
1414 1415
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1416
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1417 1418
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1419
@layer_support()
Q
qijun 已提交
1420 1421
def lstmemory(input,
              name=None,
1422
              size=None,
Q
qijun 已提交
1423 1424 1425 1426 1427 1428
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1429 1430 1431 1432 1433 1434 1435 1436
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1437
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1438

L
luotao02 已提交
1439
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1440

L
luotao02 已提交
1441
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1442

L
luotao02 已提交
1443
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1444

L
luotao02 已提交
1445
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1446 1447


C
caoying03 已提交
1448
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1449
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1450 1451 1452 1453
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1454

C
caoying03 已提交
1455
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1456 1457
    to config a simple plain lstm layer.

C
caoying03 已提交
1458 1459 1460 1461
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1467 1468
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1479 1480 1481 1482 1483
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1484 1485 1486 1487
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1488
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1489 1490 1491 1492 1493 1494
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1495
    assert input.size is not None and input.size % 4 == 0
1496

1497 1498 1499 1500 1501
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1502 1503 1504
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1505

Q
qijun 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1516

Q
qijun 已提交
1517 1518 1519 1520 1521
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1522

Z
zhangjinchao01 已提交
1523 1524 1525

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1526
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1527 1528
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1529
@layer_support()
Q
qijun 已提交
1530
def grumemory(input,
1531
              size=None,
Q
qijun 已提交
1532 1533 1534 1535 1536 1537
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1559 1560
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1561 1562 1563 1564 1565

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1566 1567 1568
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1569 1570 1571 1572 1573

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1574
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1575
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1576 1577 1578
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1579

C
caoying03 已提交
1580 1581 1582
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1594 1595
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1596
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1597 1598 1599 1600 1601 1602 1603 1604
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1605 1606 1607 1608 1609
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1610 1611 1612 1613
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1614
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1615 1616 1617 1618
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1619 1620 1621 1622 1623 1624
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1625 1626 1627
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1628

Q
qijun 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1638

Q
qijun 已提交
1639 1640 1641 1642 1643
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1644

Z
zhangjinchao01 已提交
1645 1646 1647

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1648 1649
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1650
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1651
             stride=-1,
Z
zhangjinchao01 已提交
1652 1653 1654 1655
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1656 1657 1658
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1659
    of stride is -1.
1660

L
Luo Tao 已提交
1661 1662 1663 1664 1665 1666
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1667 1668 1669 1670 1671
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1672
    :param stride: The step size between successive pooling regions.
1673
    :type stride: Int
Z
zhangjinchao01 已提交
1674 1675
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1676
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1677 1678
    :rtype: LayerOutput
    """
1679 1680 1681 1682 1683 1684
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1685
    if agg_level == AggregateLevel.TO_SEQUENCE:
1686 1687
        assert stride == -1

Z
zhangjinchao01 已提交
1688 1689 1690 1691 1692
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1693
        stride=stride,
Q
qijun 已提交
1694 1695 1696 1697 1698 1699
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1700 1701 1702 1703


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1704 1705
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1706
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1707
              stride=-1,
Z
zhangjinchao01 已提交
1708 1709 1710 1711
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1712 1713 1714
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1715
    of stride is -1.
1716

L
Luo Tao 已提交
1717 1718 1719 1720 1721 1722
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1723 1724 1725 1726 1727
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1728
    :param stride: The step size between successive pooling regions.
1729
    :type stride: Int
Z
zhangjinchao01 已提交
1730 1731
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1732
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1733 1734
    :rtype: LayerOutput
    """
1735 1736 1737 1738 1739 1740 1741

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1742
    if agg_level == AggregateLevel.TO_SEQUENCE:
1743 1744
        assert stride == -1

Z
zhangjinchao01 已提交
1745 1746 1747 1748 1749
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1750
        stride=stride,
Q
qijun 已提交
1751 1752 1753 1754 1755 1756
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1757 1758 1759


class ExpandLevel(object):
1760 1761 1762 1763 1764
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1765 1766
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1767 1768
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1769 1770
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1771 1772
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1773 1774
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1775 1776
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1777

1778

Z
zhangjinchao01 已提交
1779 1780
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1781 1782
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1783 1784
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1785
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1797
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1798 1799 1800 1801 1802 1803 1804

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
1805 1806 1807 1808 1809
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1810 1811 1812 1813
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1814
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1824 1825 1826 1827 1828 1829
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1830 1831


X
xuwei06 已提交
1832
@wrap_name_default()
X
xuwei06 已提交
1833
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1834
@layer_support()
X
xuwei06 已提交
1835 1836 1837
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1838
                 act=None,
X
xuwei06 已提交
1839 1840
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1841
    """
X
xuwei06 已提交
1842
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1843

X
xuwei06 已提交
1844
    If as_row_vector:
X
xuwei06 已提交
1845
    .. math::
X
xuwei06 已提交
1846 1847 1848 1849 1850
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1851 1852 1853 1854 1855

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1856
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1857 1858 1859 1860 1861 1862

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1863 1864 1865 1866 1867 1868
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1869 1870
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1881
        active_type=act.name,
X
xuwei06 已提交
1882
        num_filters=num_repeats,
X
xuwei06 已提交
1883
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1884
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1885 1886 1887 1888 1889
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1890
        activation=act,
Q
qijun 已提交
1891 1892
        parents=[input])

X
xuwei06 已提交
1893

1894 1895 1896
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1897
@layer_support(ERROR_CLIPPING, DROPOUT)
1898 1899 1900 1901 1902 1903 1904 1905
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1906
    the dimension of each instance is M, and the input reshape_size is N, then the
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1927 1928 1929 1930 1931
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1979 1980
    :rtype: LayerOutput
    """
1981
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1982
    assert len(input) == 2
1983 1984 1985 1986 1987 1988 1989
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1990 1991 1992 1993
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1994 1995 1996 1997 1998 1999
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2000 2001


L
liaogang 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2018
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2019

L
liaogang 已提交
2020
    :param   input:        A input layer.
L
liaogang 已提交
2021
    :type    input:        LayerOutput.
L
liaogang 已提交
2022
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
2023
    :type    out_size_x:   int|None
L
liaogang 已提交
2024
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
2025
    :type    out_size_y:   int|None
L
liaogang 已提交
2026
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
2027
    :type    name:         None|basestring
L
liaogang 已提交
2028
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2029 2030 2031 2032 2033 2034 2035
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2036
    assert input.num_filters is not None
L
liaogang 已提交
2037
    num_channels = input.num_filters
Q
qijun 已提交
2038 2039 2040 2041 2042 2043 2044
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2045
                channels=num_channels)),
Q
qijun 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2055

Z
zhangjinchao01 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2083
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2084 2085
    :rtype: LayerOutput
    """
2086 2087 2088
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2089 2090 2091
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2092
        inputs=[weight.name, input.name],
Q
qijun 已提交
2093 2094 2095
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2096 2097 2098 2099 2100 2101


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2102
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2103 2104

    .. math::
2105
       y  = w x
Z
zhangjinchao01 已提交
2106

2107 2108 2109 2110 2111
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2127
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2128 2129
    :rtype: LayerOutput
    """
2130 2131 2132
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2133 2134 2135 2136
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2137 2138 2139
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2140 2141 2142 2143 2144 2145


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2146
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2165
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2166 2167 2168 2169 2170 2171
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2172 2173 2174
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2175 2176


2177 2178
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2179
def rotate_layer(input, height, width, name=None, layer_attr=None):
2180
    """
H
Haonan 已提交
2181 2182
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2183 2184

    .. math::
H
Haonan 已提交
2185
       y(j,i,:) = x(M-i-1,j,:)
2186

H
Haonan 已提交
2187
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2188 2189 2190 2191 2192 2193

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2194 2195
                          height=100,
                          width=100)
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2209 2210 2211
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2212
        width=width,
H
Haonan 已提交
2213 2214 2215 2216 2217 2218 2219 2220
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2221 2222


Z
zhangjinchao01 已提交
2223 2224
@wrap_name_default()
@layer_support()
2225
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2226 2227 2228 2229
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2230
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2231 2232 2233 2234 2235
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2236

2237 2238
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2239

L
Luo Tao 已提交
2240 2241 2242 2243 2244 2245
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2258
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2259 2260
    :rtype: LayerOutput
    """
2261
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2262 2263 2264 2265 2266 2267
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2268
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2269
    else:
2270 2271
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2272 2273 2274 2275 2276 2277
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2278
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2279
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2280

2281

Z
zhangjinchao01 已提交
2282 2283
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2284
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2285
@layer_support()
Q
qijun 已提交
2286 2287
def hsigmoid(input,
             label,
2288
             num_classes=None,
Q
qijun 已提交
2289 2290 2291 2292
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2304
                        label=data_layer)
Z
zhangjinchao01 已提交
2305 2306 2307 2308 2309 2310 2311

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2312
    :type num_classes: int|None
L
luotao02 已提交
2313 2314
    :param name: layer name
    :type name: basestring
2315 2316 2317 2318 2319
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
2320 2321
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2322 2323
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2324
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2325 2326 2327 2328
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2329 2330 2331 2332 2333 2334 2335 2336 2337
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2338 2339 2340
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2341 2342 2343 2344 2345
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2346 2347
    ipts_for_layer = []
    parents = []
2348
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2349
        assert isinstance(each_input, LayerOutput)
2350
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2351 2352 2353 2354
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2355
    l = Layer(
Z
zhangjinchao01 已提交
2356 2357 2358 2359 2360
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2361 2362 2363
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2364

2365

Z
zhangjinchao01 已提交
2366 2367 2368 2369 2370
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2380
                   dilation=1,
Q
qijun 已提交
2381 2382 2383 2384 2385 2386 2387
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2388
                   dilation_y=None,
2389 2390
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2391
    """
2392
    Convolution layer for image. Paddle can support both square and non-square
2393
    input currently.
Z
zhangjinchao01 已提交
2394 2395 2396 2397

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2398

2399
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2400
    and non-square input currently.
2401

X
xuwei06 已提交
2402
    The details of convolution transpose layer,
2403 2404 2405
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2406 2407 2408 2409
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2410 2411 2412
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2413
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2414 2415
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2416

L
Luo Tao 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2427 2428 2429 2430
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2431 2432 2433
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2434 2435 2436
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2437
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2438 2439 2440 2441 2442
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2443 2444 2445
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2446 2447
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2448 2449 2450
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2451 2452
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2453 2454 2455
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
W
wanghaoshuang 已提交
2456 2457
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2458 2459 2460 2461 2462
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2472 2473
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2474
    :param layer_type: specify the layer_type, default is None. If trans=True,
2475 2476
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2477
                       "cudnn_conv"
2478
    :type layer_type: String
D
dangqingqing 已提交
2479
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2480 2481 2482 2483 2484
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2485

Z
zhangjinchao01 已提交
2486
    if filter_size_y is None:
2487 2488 2489 2490 2491 2492
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2493
    if stride_y is None:
2494 2495 2496 2497 2498 2499
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2500
    if padding_y is None:
2501 2502 2503 2504 2505 2506
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2507 2508 2509 2510 2511 2512 2513
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2514 2515
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2516
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2517 2518 2519 2520
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2521

2522
    if layer_type:
W
wanghaoshuang 已提交
2523 2524
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2525
        if trans:
2526
            assert layer_type in ["exconvt", "cudnn_convt"]
2527 2528 2529 2530 2531
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2532

X
xuwei06 已提交
2533
    l = Layer(
Z
zhangjinchao01 已提交
2534
        name=name,
Q
qijun 已提交
2535 2536 2537 2538 2539
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2540
                dilation=dilation,
Q
qijun 已提交
2541 2542 2543 2544 2545
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2546
                dilation_y=dilation_y,
Q
qijun 已提交
2547 2548
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2549 2550 2551 2552
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2553
        type=lt,
Q
qijun 已提交
2554 2555 2556 2557 2558 2559 2560 2561
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2562 2563 2564 2565


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2576 2577
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2578 2579 2580 2581 2582 2583 2584
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2613
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2614
    :type padding: int
2615 2616
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2617 2618 2619 2620
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2621
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2622
    :type pool_size: int
2623 2624
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2625 2626
    :param num_channels: number of input channel.
    :type num_channels: int
2627
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2628 2629
                      MaxPooling.
    :type pool_type: BasePoolingType
2630
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2631
    :type stride: int
2632 2633
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2634 2635
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2636 2637 2638 2639
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2640 2641
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2652 2653 2654 2655
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2656
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2657
        if (
Y
Yu Yang 已提交
2658
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2659
        else pool_type.name
2660 2661 2662 2663
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2664
    l = Layer(
Z
zhangjinchao01 已提交
2665 2666
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2679
                    padding_y=padding_y))
Q
qijun 已提交
2680
        ],
2681
        ceil_mode=ceil_mode,
Q
qijun 已提交
2682 2683 2684 2685 2686 2687 2688
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2689 2690


C
chengduoZH 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
    :type padding: int|tuple|list
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
    :param pool_size: pooling window width
    :type pool_size: int|tuple|list
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
    :type stride: int|tuple|list
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2831 2832
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2833 2834 2835 2836 2837 2838
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2839 2840 2841 2842 2843
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2844 2845 2846 2847
    The example usage is:

    ..  code-block:: python

2848 2849 2850
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2851 2852
                        pool_type=MaxPooling())

Q
qijun 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2881
    l = Layer(
Q
qijun 已提交
2882 2883
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2884 2885 2886 2887 2888
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2889
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2901 2902 2903 2904
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2905
    l = Layer(
Q
qijun 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2925 2926 2927 2928


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2929 2930 2931 2932 2933 2934
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2935
                      layer_attr=None):
Z
zhangjinchao01 已提交
2936
    """
2937
    Response normalization across feature maps.
D
dangqingqing 已提交
2938 2939
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2940

L
Luo Tao 已提交
2941 2942 2943
    The example usage is:

    ..  code-block:: python
2944

L
Luo Tao 已提交
2945 2946
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2947
    :param name: layer name.
D
dangqingqing 已提交
2948
    :type name: None|basestring
Z
zhangjinchao01 已提交
2949 2950
    :param input: layer's input.
    :type input: LayerOutput
2951
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2952
    :type size: int
D
dangqingqing 已提交
2953
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2954
    :type scale: float
D
dangqingqing 已提交
2955
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2956 2957 2958 2959 2960
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2961
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2962 2963 2964
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2965
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2966 2967 2968


@wrap_bias_attr_default()
2969 2970
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2971 2972
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2973
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2974 2975 2976
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2977
                     img3D=False,
Q
qijun 已提交
2978 2979 2980 2981
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2982 2983
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2984 2985
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3004 3005 3006
    The example usage is:

    ..  code-block:: python
3007

L
Luo Tao 已提交
3008 3009
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
3024
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
3034
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3052 3053
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3054
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3065
    l = Layer(
Z
zhangjinchao01 已提交
3066
        name=name,
C
chengduoZH 已提交
3067
        img3D=img3D,
Q
qijun 已提交
3068 3069
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3070 3071 3072 3073 3074 3075
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3076
        mean_var_names=mean_var_names,
Q
qijun 已提交
3077
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3078

Q
qijun 已提交
3079 3080 3081 3082 3083 3084 3085
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3113
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3114 3115 3116 3117 3118 3119
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3120 3121 3122
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3123 3124


G
guosheng 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3161 3162 3163
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3164
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3165
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3188 3189 3190
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3191 3192

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3193 3194
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
3204 3205 3206 3207 3208
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3209 3210
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3211
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3212 3213 3214 3215 3216 3217
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3218
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3219 3220 3221 3222 3223 3224 3225
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3226
    l = Layer(
Q
qijun 已提交
3227 3228 3229
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3230 3231
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3232
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3233

Q
qijun 已提交
3234 3235 3236 3237 3238 3239 3240
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3241 3242 3243 3244


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3245
@layer_support(DROPOUT, ERROR_CLIPPING)
3246
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3247 3248 3249 3250
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3251 3252 3253 3254 3255 3256
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3257 3258 3259
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3260
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3261 3262 3263 3264
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3265
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3266 3267 3268 3269 3270 3271 3272 3273
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3274
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3275 3276

    def __is_type__(o, tp):
3277
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3299 3300
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3301

Q
qijun 已提交
3302 3303
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3304

3305 3306
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3307

3308
    layer = Layer(
Q
qijun 已提交
3309 3310
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3311 3312
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3313
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3314
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3315

3316
    sz = layer.config.size
Z
zhangjinchao01 已提交
3317

Q
qijun 已提交
3318 3319 3320 3321 3322 3323 3324 3325
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3326 3327
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3328
@wrap_bias_attr_default(has_bias=False)
3329
@layer_support(DROPOUT, ERROR_CLIPPING)
3330 3331 3332 3333
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3334

3335
    Inputs:
X
xuwei06 已提交
3336
      - a = [a1, a2, ..., am]
3337
      - b = [b1, b2, ..., bn]
3338

X
xuwei06 已提交
3339 3340 3341 3342
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3360 3361 3362 3363 3364
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3386
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3387 3388
def memory(name,
           size,
3389
           memory_name=None,
Q
qijun 已提交
3390 3391 3392 3393
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3414 3415 3416 3417 3418 3419 3420 3421 3422
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3423

3424 3425 3426 3427 3428 3429 3430
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3431 3432 3433
    :type name: basestring
    :param size: size of memory.
    :type size: int
3434 3435 3436
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3437
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3447
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3458 3459
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3460

3461 3462 3463 3464 3465 3466 3467 3468
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3469 3470

    lout = LayerOutput(
3471
        name=memory_name,
Q
qijun 已提交
3472 3473 3474
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3475 3476 3477 3478
    return lout


@wrap_bias_attr_default()
3479 3480
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3481 3482 3483
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3484 3485
def lstm_step_layer(input,
                    state,
3486
                    size=None,
Q
qijun 已提交
3487 3488 3489 3490 3491 3492
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3493
    """
3494 3495
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3496 3497 3498

    ..  math::

3499
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3500

3501
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3502

3503
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3504

3505
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3506

L
luotao02 已提交
3507
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3508 3509


L
luotao02 已提交
3510
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3511
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3512
    input vectors.
Z
zhangjinchao01 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3523 3524
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3525 3526 3527 3528
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3529 3530
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
3545 3546 3547 3548 3549
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3550 3551
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3552
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3553 3554
    :rtype: LayerOutput
    """
3555 3556 3557

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3558 3559 3560 3561 3562 3563 3564
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3565
        size=state.size,
Q
qijun 已提交
3566 3567
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3568

Q
qijun 已提交
3569 3570 3571 3572 3573 3574 3575
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3576 3577 3578


@wrap_bias_attr_default()
W
wangyang59 已提交
3579
@wrap_param_attr_default()
Q
qijun 已提交
3580
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3581 3582 3583
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3584 3585 3586 3587 3588 3589 3590
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3591
                   param_attr=None,
Q
qijun 已提交
3592
                   layer_attr=None):
Z
zhangjinchao01 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
3602 3603 3604 3605 3606
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3607 3608
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3609
    :param layer_attr:
D
dangqingqing 已提交
3610
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3611 3612 3613 3614 3615 3616 3617 3618
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3619 3620 3621 3622
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3623
        # backward model compatibility.
3624
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3625 3626 3627 3628
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3629
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3630
    return LayerOutput(
Q
qijun 已提交
3631 3632
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3633
        parents=[input, output_mem],
Q
qijun 已提交
3634 3635
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3636 3637


Y
Yu Yang 已提交
3638 3639 3640 3641
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3642
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
3663 3664 3665 3666 3667
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Y
Yu Yang 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3714 3715 3716 3717
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3718 3719 3720 3721
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3731
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3732 3733 3734 3735 3736 3737 3738
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3739 3740 3741 3742 3743 3744 3745
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3746

Q
qijun 已提交
3747 3748 3749 3750 3751
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3752 3753 3754 3755 3756 3757 3758


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3759 3760 3761 3762 3763 3764 3765
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3766
    """
3767 3768
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3769

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
3789 3790 3791 3792 3793
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3794 3795 3796 3797 3798 3799
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3800
    :return: LayerOutput object.
3801
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3802
    """
Q
qijun 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3818 3819 3820 3821 3822 3823


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3824 3825
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3826
    """
3827

Z
zhangjinchao01 已提交
3828 3829 3830
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3831
        assert input.size is not None
Z
zhangjinchao01 已提交
3832
        if size is not None:
3833
            assert input.size == size
Z
zhangjinchao01 已提交
3834 3835


3836
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3837
    """
3838
    DEPRECATED.
Z
zhangjinchao01 已提交
3839 3840 3841 3842 3843 3844 3845 3846
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3847
    return input
Z
zhangjinchao01 已提交
3848 3849 3850


@wrap_name_default("recurrent_group")
3851
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3852
    """
C
caoying03 已提交
3853 3854 3855 3856 3857
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3902 3903
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3904
    :type reverse: bool
3905

3906 3907
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3908 3909 3910 3911 3912 3913 3914 3915 3916

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3917
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3918 3919 3920 3921
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3922
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3923
        input = [input]
3924
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3925 3926

    def is_in_links(x):
3927
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3928 3929 3930 3931

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3932
        name=name,
3933 3934
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3935 3936
    in_args = []
    for each_input in input:
3937
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3938
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3939
            mem = memory(
3940
                name=None,
Q
qijun 已提交
3941 3942
                size=each_input.input.size,
                boot_layer=each_input.input)
3943
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3944
            in_args.append(mem)
3945 3946
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3947

Z
zhangjinchao01 已提交
3948 3949 3950 3951 3952
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3953 3954 3955 3956 3957 3958
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3959 3960 3961

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3962
    for layer_out in layer_outs:
3963 3964
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3965 3966
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3967 3968 3969 3970 3971
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3972

Z
zhangjinchao01 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4001 4002

    def before_real_step(self):
Q
qijun 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4012 4013 4014
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4015
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4040 4041 4042 4043
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4054

4055

H
Haonan 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4092

Z
zhangjinchao01 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
4109 4110
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
4111 4112 4113 4114 4115 4116
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4117
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4118 4119
    :rtype: LayerOutput
    """
Q
qijun 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4131 4132 4133


@wrap_name_default()
Q
qijun 已提交
4134 4135 4136 4137 4138 4139 4140
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4141
                num_results_per_sample=None):
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4153
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4154 4155 4156 4157
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4158 4159 4160 4161 4162
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4163 4164
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4165 4166
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4167 4168
                               bos_id=0,
                               eos_id=1,
4169
                               beam_size=5)
4170 4171 4172 4173 4174 4175 4176 4177 4178

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4179
                 step, and it is applied to sequences with arbitrary length by
4180 4181 4182 4183 4184
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4185 4186
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4187
                  In beam_search, none of the input's type should be LayerOutput.
4188
    :type input: list
4189 4190 4191
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4192
                   symbol is essential, since it is used to initialize the RNN
4193 4194 4195 4196 4197 4198 4199 4200
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4201 4202
    :param max_length: Max generated sequence length.
    :type max_length: int
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4213 4214
    :return: The generated word index.
    :rtype: LayerOutput
4215 4216
    """

Z
zhangjinchao01 已提交
4217 4218 4219 4220 4221
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4222
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4223 4224 4225 4226 4227 4228
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4229 4230 4231
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4232
        if isinstance(each_input, BaseGeneratedInput):
4233 4234
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4235
            generated_input_index = i
4236

Z
zhangjinchao01 已提交
4237 4238 4239
        else:
            real_input.append(each_input)

4240
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4241 4242 4243 4244 4245 4246 4247 4248

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4249 4250 4251 4252 4253 4254
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4255 4256 4257 4258 4259 4260

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4261
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4262 4263
        return predict

4264 4265
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4266

Q
qijun 已提交
4267

4268 4269
def __cost_input__(input, label, weight=None):
    """
4270
    inputs and parents for cost layers.
4271
    """
C
caoying03 已提交
4272 4273 4274 4275 4276 4277
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4278
    if weight is not None:
4279
        assert weight.size == 1
4280 4281 4282
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4283

Z
zhangjinchao01 已提交
4284 4285

@wrap_name_default()
L
luotao1 已提交
4286
@layer_support()
4287 4288 4289 4290 4291 4292
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4293
    """
4294
    sum of square error cost:
L
Luo Tao 已提交
4295 4296 4297

    ..  math::

4298
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4299 4300

    :param name: layer name.
4301
    :type name: basestring
Z
zhangjinchao01 已提交
4302
    :param input: Network prediction.
4303
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4304
    :param label: Data label.
4305 4306 4307 4308
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4309 4310
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4311 4312
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4313
    :return: LayerOutput object.
4314
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4315
    """
4316 4317
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4318 4319 4320 4321
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4322
        coeff=coeff,
Q
qijun 已提交
4323
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4324
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4325 4326


4327
regression_cost = square_error_cost
L
Luo Tao 已提交
4328 4329


Z
zhangjinchao01 已提交
4330
@wrap_name_default("cost")
4331
@layer_support()
Q
qijun 已提交
4332 4333 4334 4335
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4336
                        evaluator=classification_error_evaluator,
4337 4338
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4348 4349 4350
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4351
    :param evaluator: Evaluator method.
4352 4353
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4354 4355
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4356
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4357 4358 4359 4360 4361
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4362 4363 4364

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4365 4366 4367 4368
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4369
        coeff=coeff,
Q
qijun 已提交
4370
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4381
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4382

4383
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4384 4385 4386 4387 4388
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4389
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4390

4391

Q
qijun 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4401 4402
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4413 4414
       op = conv_operator(img=input1,
                          filter=input2,
4415
                          filter_size=3,
Z
zhangjinchao01 已提交
4416 4417 4418
                          num_filters=64,
                          num_channels=64)

4419 4420 4421 4422
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4423 4424
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4425 4426 4427
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4428
    :type filter_size_y: int
4429 4430
    :param num_filters: channel of output data.
    :type num_filters: int
4431 4432
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4433
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4434
    :type stride: int
Z
zhangjinchao01 已提交
4435
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4436
    :type stride_y: int
Z
zhangjinchao01 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4450

4451 4452
    if num_channels is None:
        num_channels = img.num_filters
4453 4454

    assert isinstance(filter, LayerOutput)
4455
    assert filter.size is not None
4456

4457 4458 4459
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4471

4472
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4473 4474
    return op

Q
qijun 已提交
4475

4476
@wrap_param_attr_default()
Q
qijun 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4487 4488
                    param_attr=None,
                    trans=False):
4489 4490 4491 4492 4493 4494 4495 4496 4497
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4498
       proj = conv_projection(input=input1,
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4513 4514
    :param num_channels: channel of input data.
    :type num_channels: int
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4527 4528
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4559
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4560 4561 4562 4563 4564
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4565 4566 4567
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4580 4581 4582 4583

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4584

D
dangqingqing 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4602

D
dangqingqing 已提交
4603
    For example,
4604

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4626 4627

    The simply usage is:
D
dangqingqing 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4689
@wrap_name_default()
L
luotao1 已提交
4690 4691
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4703 4704 4705 4706
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4707 4708 4709 4710 4711

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4712
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4713 4714 4715

    :param name: layer name
    :type name: basestring
4716 4717
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4718
    :param b: input layer b.
4719
    :type b: LayerOutput
L
luotao1 已提交
4720 4721
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4722
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4723 4724
    :rtype: LayerOutput
    """
4725 4726
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4727 4728 4729
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4730
        inputs=[a.name, b.name],
Q
qijun 已提交
4731
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4732

Q
qijun 已提交
4733 4734
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4735 4736 4737 4738 4739


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4740
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4741
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4742 4743 4744 4745 4746 4747 4748 4749
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4750 4751 4752 4753 4754
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4755
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4756 4757

    In this formular:
4758 4759
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4760 4761
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4762
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4763 4764 4765 4766 4767

    The simple usage is:

    .. code-block:: python

4768
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4769 4770 4771

    :param name: layer name
    :type name: basestring
4772 4773 4774 4775
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4776
    :param size: the layer dimension.
L
luotao02 已提交
4777
    :type size: int.
Z
zhangjinchao01 已提交
4778 4779 4780
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4781
    :type param_attr: ParameterAttribute
4782 4783 4784 4785 4786
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4787 4788
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4789
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4790 4791
    :rtype: LayerOutput
    """
4792
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4793 4794 4795 4796 4797 4798
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4799 4800 4801 4802
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4803 4804 4805 4806 4807 4808


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4809
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4810 4811
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4812
                       select=None,
Q
qijun 已提交
4813 4814
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4815 4816 4817
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4818 4819 4820
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4831
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4832 4833 4834 4835 4836

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4837 4838
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4839
                   If is None, acts exactly like fc_layer.
4840
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4841 4842 4843 4844 4845 4846
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4847 4848 4849 4850 4851
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4852 4853
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4854
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4855 4856 4857 4858
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4859
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4860 4861
        param_attr = [param_attr]
    else:
4862
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4863 4864 4865 4866
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4867 4868 4869 4870
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4871
    Layer(
Q
qijun 已提交
4872 4873 4874
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4875 4876 4877
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4878
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4879 4880 4881 4882
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4883 4884 4885 4886 4887 4888 4889
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4890 4891 4892


@wrap_name_default()
L
luotao1 已提交
4893 4894
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4909 4910
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4911
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4912 4913
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4914
    l = Layer(
Z
zhangjinchao01 已提交
4915 4916 4917
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4918 4919 4920
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4921 4922 4923


@wrap_name_default()
L
luotao1 已提交
4924
@layer_support()
Q
qijun 已提交
4925 4926 4927 4928
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4929
                          layer_attr=None):
Z
zhangjinchao01 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4951 4952
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4953
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4954 4955 4956 4957 4958 4959 4960 4961
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4962 4963 4964
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4965 4966 4967


@wrap_name_default()
L
luotao1 已提交
4968
@layer_support()
Q
qijun 已提交
4969
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4970
    """
4971 4972 4973 4974
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4975 4976 4977

    .. math::

4978
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4979

4980 4981 4982 4983 4984
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4985

4986
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4987 4988

    In this formular:
4989 4990 4991 4992 4993 4994
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4995 4996 4997 4998 4999

    The simple usage is:

    .. code-block:: python

5000
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5001 5002
                                       size=elem_dim)

5003 5004 5005 5006
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5007 5008 5009 5010
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
5011 5012
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5013
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5014 5015
    :rtype: LayerOutput
    """
5016 5017 5018 5019
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5020
            size = vectors.size / weights.size
5021 5022
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5023 5024
    Layer(
        name=name,
5025
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5026
        size=size,
5027
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5028 5029 5030
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5031

5032

5033
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5034

5035

Z
zhangjinchao01 已提交
5036
@wrap_name_default()
L
luotao1 已提交
5037
@layer_support()
Z
zhangjinchao01 已提交
5038 5039 5040 5041 5042 5043 5044
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5045
                       num_channels=None,
L
luotao1 已提交
5046 5047
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5048 5049
    """
    Expand feature map to minibatch matrix.
5050
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5051
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5062
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5063 5064
    convolution neural network, and before recurrent neural network.

5065 5066 5067 5068
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5069
       block_expand = block_expand_layer(input=layer,
5070
                                         num_channels=128,
5071 5072 5073 5074 5075
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
5076 5077
    :param input: The input layer.
    :type input: LayerOutput
5078 5079
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
5094 5095
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5096
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5097 5098
    :rtype: LayerOutput
    """
5099 5100 5101
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5119 5120


5121 5122
@wrap_name_default()
@layer_support()
5123
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5124 5125 5126 5127 5128
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5129
    So groups should be larger than 1, and the num of channels should be able
5130 5131
    to devided by groups.

X
xuwei06 已提交
5132 5133 5134 5135 5136 5137 5138 5139
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5140
    Please refer to Paper:
5141 5142 5143 5144
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5145

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5183 5184


Z
zhangjinchao01 已提交
5185
@wrap_name_default()
L
luotao1 已提交
5186
@layer_support()
Q
qijun 已提交
5187 5188 5189 5190 5191
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5192
              layer_attr=None):
Z
zhangjinchao01 已提交
5193 5194 5195 5196 5197
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5198 5199
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5200 5201
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5202 5203 5204 5205 5206 5207 5208 5209

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5210
    The example usage is:
Z
zhangjinchao01 已提交
5211 5212 5213 5214 5215 5216 5217 5218

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5219
    :param input: The input layer.
Z
zhangjinchao01 已提交
5220 5221 5222
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5223
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5224
    :type size: int
5225 5226
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
5227 5228
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5229 5230
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5231
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5232 5233 5234 5235
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5236 5237 5238 5239 5240
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5241
    Layer(
5242 5243 5244 5245
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5246
        inputs=[input.name, label.name],
Q
qijun 已提交
5247
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5248 5249
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5250

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5262
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5263
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5264 5265 5266 5267 5268 5269 5270
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5271 5272 5273
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5274
    icml2006_GravesFGS06.pdf>`_.
5275 5276 5277

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5278 5279 5280
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5281 5282
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5283
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5284
          'linear' activation is expected instead in the 'input' layer.
5285

C
caoying03 已提交
5286
    The example usage is:
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5332
@wrap_name_default()
5333
@wrap_param_attr_default()
L
luotao1 已提交
5334
@layer_support()
Q
qijun 已提交
5335 5336 5337 5338 5339 5340
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5341
              coeff=1.0,
L
luotao1 已提交
5342
              layer_attr=None):
Z
zhangjinchao01 已提交
5343 5344 5345 5346
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5347
    The example usage is:
Z
zhangjinchao01 已提交
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5358
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5359 5360 5361 5362 5363 5364 5365
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5366
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5367
    :type name: None|basestring
5368 5369
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5370 5371
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5372
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5373 5374 5375 5376 5377
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5378 5379 5380 5381 5382 5383
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5384

Q
qijun 已提交
5385
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5386 5387 5388 5389
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5390 5391 5392 5393
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5394
        coeff=coeff,
Q
qijun 已提交
5395
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5396 5397 5398
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5399 5400 5401 5402
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5403

5404

Z
zhangjinchao01 已提交
5405
@wrap_name_default()
5406
@wrap_param_attr_default()
L
luotao1 已提交
5407
@layer_support()
Q
qijun 已提交
5408 5409 5410 5411 5412
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5413
                       layer_attr=None):
Z
zhangjinchao01 已提交
5414 5415 5416 5417 5418 5419 5420
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5421
    The example usage is:
L
Luo Tao 已提交
5422 5423 5424 5425 5426 5427

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5428 5429 5430 5431 5432 5433 5434 5435
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5436
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5437
    :type name: None|basestring
L
luotao1 已提交
5438 5439
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5440
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5441 5442 5443 5444 5445 5446
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5447
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5448 5449 5450 5451
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5452 5453 5454 5455
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5456
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5457 5458 5459
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5460 5461 5462 5463
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5464

Q
qijun 已提交
5465

Y
Yu Yang 已提交
5466
@wrap_act_default(act=SigmoidActivation())
5467
@wrap_bias_attr_default(has_bias=True)
5468
@wrap_param_attr_default()
5469 5470
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5471 5472
def nce_layer(input,
              label,
C
caoying03 已提交
5473
              num_classes=None,
Y
Yu Yang 已提交
5474
              act=None,
5475
              param_attr=None,
Q
qijun 已提交
5476 5477 5478 5479 5480 5481
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5482 5483 5484 5485 5486 5487 5488 5489 5490
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5491 5492
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5493 5494
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

R
ranqiu 已提交
5495
    :param name: The name of this layer.
5496
    :type name: basestring
R
ranqiu 已提交
5497
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
5498 5499 5500 5501 5502 5503
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5504
    :type num_classes: int
Y
Yu Yang 已提交
5505 5506
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5507 5508
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5509
    :param num_neg_samples: number of negative samples. Default is 10.
5510
    :type num_neg_samples: int
5511 5512 5513 5514
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
5515 5516 5517 5518 5519
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
5520 5521 5522 5523 5524 5525 5526
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5527 5528 5529 5530 5531 5532 5533 5534
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5535
    assert isinstance(input, collections.Sequence)
5536

5537 5538
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5539 5540
    if num_classes is None:
        num_classes = label.size
5541 5542 5543
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5544
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5545 5546
    if not isinstance(act, BaseActivation):
        raise TypeError()
5547

5548 5549
    ipts_for_layer = []
    parents = []
5550
    for each_input, attr in zip(input, param_attr):
5551
        assert isinstance(each_input, LayerOutput)
5552
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5563
    l = Layer(
5564 5565 5566 5567
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5568
        active_type=act.name,
5569 5570 5571
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5572 5573
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5574 5575 5576 5577 5578
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5579

5580

Z
zhangjinchao01 已提交
5581 5582 5583
"""
following are cost Layers.
"""
5584 5585


Z
zhangjinchao01 已提交
5586
@wrap_name_default()
L
luotao1 已提交
5587
@layer_support()
Q
qijun 已提交
5588 5589 5590 5591 5592 5593 5594
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5595
    """
5596
    A cost Layer for learning to rank using gradient descent. Details can refer
5597 5598
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5599 5600 5601 5602 5603
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5604
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5605

L
luotao02 已提交
5606
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5607

L
luotao02 已提交
5608
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5609 5610 5611 5612 5613 5614 5615 5616

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5617
    The example usage is:
Z
zhangjinchao01 已提交
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5634
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5635 5636 5637
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5638 5639
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5640
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5653 5654 5655 5656 5657 5658
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5659

X
xuwei06 已提交
5660
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5661

5662

Z
zhangjinchao01 已提交
5663
@wrap_name_default()
L
luotao1 已提交
5664
@layer_support()
Q
qijun 已提交
5665 5666 5667 5668 5669 5670
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5671 5672 5673
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5674
    The example usage is:
Z
zhangjinchao01 已提交
5675 5676 5677 5678 5679 5680 5681 5682

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5683
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5684 5685 5686 5687
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5688
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5689 5690 5691 5692 5693 5694
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5695 5696 5697
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5698
    :type max_sort_size: int
R
ranqiu 已提交
5699
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5700
    :type name: None|basestring
L
luotao1 已提交
5701 5702
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5703
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5704 5705
    :rtype: LayerOutput
    """
5706 5707 5708
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5709 5710 5711 5712 5713 5714 5715
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5716

Q
qijun 已提交
5717 5718
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5719

5720

Z
zhangjinchao01 已提交
5721
@wrap_name_default()
L
luotao1 已提交
5722
@layer_support()
5723 5724 5725 5726 5727 5728
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5729 5730 5731
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5732 5733
    The example usage is:

Z
zhangjinchao01 已提交
5734 5735
    .. code-block:: python

X
xuwei06 已提交
5736
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5737
                            label=label_layer)
Z
zhangjinchao01 已提交
5738 5739 5740 5741 5742

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5743
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5744
    :type name: None|basestring.
5745 5746
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5747
    :type coeff: float.
5748 5749 5750 5751
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5752 5753
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5754
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5755 5756 5757
    :rtype: LayerOutput.
    """

5758
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5759 5760 5761
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5762
        inputs=ipts,
Q
qijun 已提交
5763 5764
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5765
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5766

5767

Z
zhangjinchao01 已提交
5768
@wrap_name_default()
L
luotao1 已提交
5769
@layer_support()
Q
qijun 已提交
5770 5771 5772 5773
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5774 5775
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5776 5777
    """
    A loss layer for multi class entropy with selfnorm.
5778
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5779

C
caoying03 已提交
5780 5781
    The example usage is:

Z
zhangjinchao01 已提交
5782 5783
    .. code-block:: python

X
xuwei06 已提交
5784
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5785
                                          label=label_layer)
Z
zhangjinchao01 已提交
5786 5787 5788 5789 5790

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5791
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5792 5793 5794 5795 5796
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5797 5798
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5799
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5800 5801
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5802 5803 5804 5805 5806 5807 5808
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5809

Q
qijun 已提交
5810 5811 5812 5813 5814
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5815

5816

X
xuwei06 已提交
5817 5818 5819 5820 5821 5822
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5823 5824
    The example usage is:

X
xuwei06 已提交
5825 5826
    .. code-block:: python

L
Luo Tao 已提交
5827
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5828 5829 5830

    :param input: The first input layer.
    :type input: LayerOutput.
R
ranqiu 已提交
5831
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
5832 5833 5834 5835 5836 5837
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5838
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5839 5840 5841 5842 5843
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5844

Q
qijun 已提交
5845
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5846 5847


Z
zhangjinchao01 已提交
5848
@wrap_name_default()
L
luotao1 已提交
5849
@layer_support()
L
Luo Tao 已提交
5850 5851 5852 5853 5854 5855
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5856
    """
5857 5858 5859
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5860 5861 5862 5863 5864
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5865

C
caoying03 已提交
5866 5867
    The example usage is:

Z
zhangjinchao01 已提交
5868 5869
    .. code-block:: python

L
Luo Tao 已提交
5870 5871 5872 5873 5874 5875
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5876
    :param name: The name of this layer. It is optional.
L
Luo Tao 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
    :type name: None|basestring.
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5899
@wrap_name_default()
L
luotao1 已提交
5900
@layer_support()
5901 5902 5903 5904 5905
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5906
    """
5907 5908 5909
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5910 5911 5912
    loss is defined as:

    .. math:
5913
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5914
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5915

C
caoying03 已提交
5916 5917
    The example usage is:

Z
zhangjinchao01 已提交
5918 5919
    .. code-block:: python

5920
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5921 5922 5923 5924 5925

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5926
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5927 5928 5929
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5930 5931
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5932
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5933 5934
    :rtype: LayerOutput.
    """
5935 5936 5937
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5938 5939
    Layer(
        name=name,
5940
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5941 5942 5943
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5944 5945
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5946

5947

Z
zhangjinchao01 已提交
5948
@wrap_name_default()
L
luotao1 已提交
5949
@layer_support()
Q
qijun 已提交
5950 5951 5952 5953
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5954
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5955 5956 5957
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5958 5959
    The example usage is:

Z
zhangjinchao01 已提交
5960 5961
    .. code-block:: python

X
xuwei06 已提交
5962
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5963
                                               label=label_layer)
Z
zhangjinchao01 已提交
5964 5965 5966 5967 5968

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5969
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5970 5971 5972
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5973 5974
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5975
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5976 5977 5978
    :rtype: LayerOutput
    """

5979 5980
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5981 5982 5983 5984
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5997 5998


C
caoying03 已提交
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6021 6022
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6023
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6024
    """
C
caoying03 已提交
6025 6026 6027
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6028

C
caoying03 已提交
6029 6030 6031 6032 6033
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6034

C
caoying03 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6053
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6074
    :param input: Input beams for this layer.
C
caoying03 已提交
6075
    :type input: BeamInput
R
ranqiu 已提交
6076
    :param name: The name of this layer.
C
caoying03 已提交
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6103 6104 6105
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6106 6107
@wrap_name_default()
@layer_support()
6108
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6109 6110
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6111
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6121
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6122

D
dangqingqing 已提交
6123 6124 6125
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6126 6127
    The example usage is:

D
dangqingqing 已提交
6128 6129
    .. code-block:: python

6130 6131
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6132 6133 6134 6135 6136

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6137
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
6138
    :type name: None|basestring
6139 6140
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6154
        coeff=coeff,
D
dangqingqing 已提交
6155 6156 6157
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6177 6178
    The example usage is:

W
wwhu 已提交
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6211 6212


6213 6214 6215 6216
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

    :param name: The name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6231 6232 6233 6234 6235 6236 6237
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6238 6239


D
dangqingqing 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6253
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6254 6255 6256 6257 6258 6259 6260
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6261
    efficient manner to improve unidirectional RNNs.
6262

R
ranqiu 已提交
6263
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6264 6265 6266 6267
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6268

D
dangqingqing 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6292
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6312 6313


6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6333 6334 6335 6336 6337 6338
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6339 6340 6341 6342 6343
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6344 6345 6346 6347 6348 6349

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6350 6351 6352 6353 6354 6355 6356 6357
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6358
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6359
    assert isinstance(param_attr, ParameterAttribute)
6360 6361 6362

    l = Layer(
        name=name,
C
caoying03 已提交
6363
        type=LayerType.PRELU,
C
caoying03 已提交
6364
        inputs=Input(input.name, **param_attr.attr),
6365 6366 6367 6368 6369 6370 6371
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6372 6373


6374
@wrap_name_default()
C
caoying03 已提交
6375
@layer_support(ERROR_CLIPPING, DROPOUT)
6376 6377 6378 6379 6380 6381 6382
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6383 6384
                     gate_bias_attr=True,
                     inproj_attr=None,
6385 6386 6387 6388 6389 6390 6391
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6392
    product between :match:`X'` and :math:`\sigma` is finally returned.
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6421 6422 6423 6424 6425 6426
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6449
        layer_attr=inproj_attr,
6450 6451 6452 6453 6454 6455 6456 6457 6458
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6459
        param_attr=gate_param_attr,
6460 6461 6462 6463 6464
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6465 6466


6467
@layer_support()
6468
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6469 6470
def switch_order_layer(input,
                       name=None,
6471
                       reshape_axis=None,
W
wanghaoshuang 已提交
6472 6473
                       act=None,
                       layer_attr=None):
6474
    """
6475 6476 6477
    This layer switch dimension order of image input. 
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6478 6479 6480 6481

    The example usage is:

    .. code-block:: python
6482 6483
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6484
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6485 6486 6487

    :param input: The input layer.
    :type input: LayerOutput
6488 6489
    :param name: Name of this layer.
    :type name: basestring
R
ranqiu 已提交
6490 6491
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6492 6493 6494
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6495
    assert isinstance(input, LayerOutput)
6496 6497 6498 6499 6500
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6501 6502
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6503
        inputs=input.name,
6504 6505
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6506
        active_type=act.name,
6507 6508 6509
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6510
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6511
        activation=act,
6512 6513
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6514 6515


6516 6517
@wrap_name_default()
@layer_support()
6518
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6519
    """
6520
    The crop layer crops images by offset and shape. User can set crop shape by
6521
    args 'shape' explicitly or by reference input layer.
6522

6523 6524 6525
    The example usage is:

    .. code-block:: python
W
whs 已提交
6526
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6527 6528 6529 6530

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6531 6532
    :param offset: The crop offset
    :type offset: Sequence
6533 6534 6535 6536 6537 6538 6539
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6540
    :type shape: Sequence | None
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6563 6564


C
caoying03 已提交
6565 6566
@wrap_name_default()
@layer_support()
6567
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6568
    """
6569
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6570
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6571

C
caoying03 已提交
6572 6573 6574
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6575 6576 6577 6578

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6579 6580

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6581

C
caoying03 已提交
6582

6583 6584 6585
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6586 6587 6588 6589 6590 6591
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6592

6593 6594 6595 6596 6597 6598 6599
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6600
    l = Layer(
6601 6602
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6603 6604 6605 6606 6607 6608 6609
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6610 6611


G
guosheng 已提交
6612
@wrap_name_default("clip")
6613
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6623
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6624 6625 6626 6627 6628

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6629 6630 6631 6632
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6633 6634
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6635 6636 6637 6638 6639
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6640 6641
        min=min,
        max=max)
G
guosheng 已提交
6642 6643
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6644 6645


6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

    :param name: name of this layer.
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6710 6711


6712 6713
@wrap_name_default()
@layer_support()
6714
def kmax_seq_score_layer(input, name=None, beam_size=1):
6715
    """
C
caoying03 已提交
6716
    This layer accepts one input which are scores over a sequence or a nested
6717 6718 6719 6720
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6721
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6722 6723 6724 6725


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6726
    :param input: The input layer. It stores scores over a sequence or a nested
6727 6728
        sequence and its size must be 1.
    :type input: LayerOutput.
R
ranqiu 已提交
6729
    :param beam_size: sequence indices with top beam_size scores are returned.
6730 6731 6732 6733
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6734
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6735
                                            "accepts only one input.")
6736
    assert input.size == 1, (
6737
        "input of kmax_seq_score_layer is a score "
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6748 6749


6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6776
        conv = img_conv3d_layer(input=data, filter_size=1,
6777 6778 6779 6780 6781 6782 6783 6784 6785
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
C
chengduoZH 已提交
6786
    :param filter_size: The x dimension of a filter kernel. Or input a list.
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
    :type filter_size: int|tuple|list
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
6801
    :type bias_attr: ParameterAttribute|None|Bool|Any
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6825 6826 6827 6828 6829 6830
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6831

C
chengduoZH 已提交
6832 6833 6834 6835 6836 6837
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6838

C
chengduoZH 已提交
6839 6840 6841 6842 6843 6844
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6891 6892


G
guosheng 已提交
6893 6894 6895 6896 6897
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6898 6899
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6900 6901
    adds a bias to it.

X
xuwei06 已提交
6902
    This layer is very like the SlopeInterceptLayer, except the scale and
6903 6904
    bias are trainable.

G
guosheng 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6919 6920 6921 6922 6923
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
G
guosheng 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)