test_imperative_deepcf.py 10.0 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24 25 26
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
from paddle.fluid.imperative.base import to_variable

X
polish  
Xin Pan 已提交
27
# Can use Amusic dataset as the DeepCF describes.
X
Xin Pan 已提交
28
DATA_PATH = os.environ.get('DATA_PATH', '')
X
polish  
Xin Pan 已提交
29 30 31

BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 128))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
X
Xin Pan 已提交
32
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
X
Xin Pan 已提交
33 34


X
Xin Pan 已提交
35
class DMF(fluid.imperative.Layer):
X
Xin Pan 已提交
36
    def __init__(self, name_scope):
X
Xin Pan 已提交
37
        super(DMF, self).__init__(name_scope)
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        self._user_latent = fluid.imperative.FC(self.full_name(), 256)
        self._item_latent = fluid.imperative.FC(self.full_name(), 256)

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


X
Xin Pan 已提交
66
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
67
    def __init__(self, name_scope):
X
Xin Pan 已提交
68
        super(MLP, self).__init__(name_scope)
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        self._user_latent = fluid.imperative.FC(self.full_name(), 256)
        self._item_latent = fluid.imperative.FC(self.full_name(), 256)
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))
        self._mat

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1)
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


class DeepCF(fluid.imperative.Layer):
X
Xin Pan 已提交
92
    def __init__(self, name_scope, num_users, num_items, matrix):
X
Xin Pan 已提交
93
        super(DeepCF, self).__init__(name_scope)
X
Xin Pan 已提交
94 95 96
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
X
polish  
Xin Pan 已提交
97
            fluid.ParamAttr(trainable=False),
X
Xin Pan 已提交
98 99 100 101 102
            matrix.shape,
            matrix.dtype,
            is_bias=False,
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
        self._rating_matrix._stop_gradient = True
X
Xin Pan 已提交
103 104 105 106 107 108

        self._mlp = MLP(self.full_name())
        self._dmf = DMF(self.full_name())
        self._match_fc = fluid.imperative.FC(self.full_name(), 1, act='sigmoid')

    def forward(self, users, items):
X
Xin Pan 已提交
109 110 111 112 113 114 115
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
        users_emb = fluid.layers.gather(self._rating_matrix, users)
        items_emb = fluid.layers.gather(
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive],
            axis=len(mlp_predictive.shape) - 1)
        prediction = self._match_fc(predictive)
        return prediction


def get_data():
    user_ids = []
    item_ids = []
    labels = []
X
Xin Pan 已提交
130 131
    NUM_USERS = 100
    NUM_ITEMS = 1000
X
polish  
Xin Pan 已提交
132 133
    matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

X
Xin Pan 已提交
134 135
    for uid in range(NUM_USERS):
        for iid in range(NUM_ITEMS):
X
Xin Pan 已提交
136
            label = float(random.randint(1, 6) == 1)
X
Xin Pan 已提交
137 138 139
            user_ids.append(uid)
            item_ids.append(iid)
            labels.append(label)
X
Xin Pan 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            matrix[uid, iid] = label
    indices = np.arange(len(user_ids))
    np.random.shuffle(indices)
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
           np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix


def load_data(DATA_PATH):
    sys.stderr.write('loading from %s\n' % DATA_PATH)
    likes = dict()
    num_users = -1
    num_items = -1
    with open(DATA_PATH, 'r') as f:
        for l in f.readlines():
            uid, iid, rating = [int(v) for v in l.split('\t')]
            num_users = max(num_users, uid + 1)
            num_items = max(num_items, iid + 1)
            if float(rating) > 0.0:
                likes[(uid, iid)] = 1.0

    user_ids = []
    item_ids = []
    labels = []
    matrix = np.zeros([num_users, num_items], dtype=np.float32)
    for uid, iid in likes.keys():
        user_ids.append(uid)
        item_ids.append(iid)
        labels.append(1.0)
        matrix[uid, iid] = 1.0

        negative = 0
        while negative < 3:
            nuid = random.randint(0, num_users - 1)
            niid = random.randint(0, num_items - 1)
            if (nuid, niid) not in likes:
                negative += 1
                user_ids.append(nuid)
                item_ids.append(niid)
                labels.append(0.0)

    indices = np.arange(len(user_ids))
X
Xin Pan 已提交
185
    np.random.shuffle(indices)
X
Xin Pan 已提交
186 187
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
X
Xin Pan 已提交
188 189 190
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
X
Xin Pan 已提交
191
           np.expand_dims(labels_np, -1), num_users, num_items, matrix
X
Xin Pan 已提交
192 193 194


class TestImperativeDeepCF(unittest.TestCase):
X
Xin Pan 已提交
195
    def test_deefcf(self):
X
Xin Pan 已提交
196
        seed = 90
X
Xin Pan 已提交
197 198 199 200 201 202
        if DATA_PATH:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = load_data(DATA_PATH)
        else:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = get_data()
X
Xin Pan 已提交
203 204 205 206 207

        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed
X
polish  
Xin Pan 已提交
208

X
Xin Pan 已提交
209 210
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
211 212
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
213 214
            labels = fluid.layers.data('labels', [1], dtype='float32')

X
Xin Pan 已提交
215
            deepcf = DeepCF('deepcf', num_users, num_items, matrix)
X
Xin Pan 已提交
216 217 218 219 220 221 222 223 224
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
X
Xin Pan 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    static_loss = exe.run(
                        main,
                        feed={
                            users.name: users_np[slice:slice + BATCH_SIZE],
                            items.name: items_np[slice:slice + BATCH_SIZE],
                            labels.name: labels_np[slice:slice + BATCH_SIZE]
                        },
                        fetch_list=[loss])[0]
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
239 240 241 242 243

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

X
Xin Pan 已提交
244
            deepcf = DeepCF('deepcf', num_users, num_items, matrix)
X
polish  
Xin Pan 已提交
245
            adam = fluid.optimizer.AdamOptimizer(0.01)
X
Xin Pan 已提交
246 247 248
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
X
polish  
Xin Pan 已提交
249 250
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
X
Xin Pan 已提交
251 252 253 254 255 256 257 258 259 260 261
                    prediction = deepcf(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss = fluid.layers.reduce_sum(
                        fluid.layers.log_loss(prediction,
                                              to_variable(labels_np[
                                                  slice:slice + BATCH_SIZE])))
                    loss._backward()
                    adam.minimize(loss)
                    deepcf.clear_gradients()
                    dy_loss = loss._numpy()
X
polish  
Xin Pan 已提交
262
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
263 264 265 266 267 268

        self.assertEqual(static_loss, dy_loss)


if __name__ == '__main__':
    unittest.main()