conv_transpose_mkldnn_op.cc 12.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE(
        is_test == true,
        "ConvTransposeMKLDNN works only for inference!. Set is_test = True");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != mkldnn::memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != mkldnn::memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");

    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != mkldnn::memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> iohw_weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> weights_tz = iohw_weights_tz;
    // IOHW -> OIHW
    weights_tz[0] = iohw_weights_tz[1];
    weights_tz[1] = iohw_weights_tz[0];

    // Custom Reorder from IOHW to OIHW
    auto iohw2oihw_reorder =
        [&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
      int o = iohw_weights_tz[1];
      int c = iohw_weights_tz[0];
      int h = iohw_weights_tz[2];
      int w = iohw_weights_tz[3];
      std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
                                               std::default_delete<T[]>());
      for (int i = 0; i < c; ++i) {
        for (int j = 0; j < o; ++j) {
          int in_offset = j * h * w + i * o * h * w;
          int out_offset = j * c * h * w + i * h * w;
          std::memcpy(&(reordered_filter_data.get())[out_offset],
                      &filter_data[in_offset], h * w * sizeof(T));
        }
      }

      return reordered_filter_data;
    };

    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    // Get unique name for storing MKLDNN primitives
    const std::string key = platform::ConvTransposeMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_transpose_pd = key + "@conv_transpose_pd";

    std::vector<mkldnn::primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md =
        platform::MKLDNNMemDesc({weights_tz}, platform::MKLDNNGetDataType<T>(),
                                (g == 1) ? mkldnn::memory::format::oihw
                                         : mkldnn::memory::format::goihw);

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");

    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

    // create a deconv(conv transpose) primitive descriptor and save it for
    // usage in backward
    std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
        conv_transpose_pd;
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), mkldnn::memory::format::x);
      conv_transpose_pd = ConvTransposeFwdPrimitiveDesc(
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fwd_prop_kind);
    } else {
      conv_transpose_pd = ConvTransposeFwdPrimitiveDesc(
          src_md, weights_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fwd_prop_kind);
    }
    // Save conv_pd/src_memory/weights_memory for backward pass
    if (!is_test) dev_ctx.SetBlob(key_conv_transpose_pd, conv_transpose_pd);

    platform::ConvTransposeMKLDNNHandler handler(conv_transpose_pd, dev_ctx,
                                                 mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p = handler.AcquireSrcMemory(
        user_src_md, platform::to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, platform::to_void_cast<T>(filter_data),
        is_test ? iohw2oihw_reorder : platform::user_function());

    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);

    std::shared_ptr<mkldnn::memory> dst_memory_p;

    auto output_data = output->mutable_data<T>(
        ctx.GetPlace(), paddle::memory::Allocator::kDefault,
        handler.GetDstMemorySize());
    dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
        platform::to_void_cast<T>(output_data));

    // create convolution op primitive
    std::shared_ptr<mkldnn::deconvolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md =
          platform::MKLDNNMemDesc({bias_tz}, platform::MKLDNNGetDataType<T>(),
                                  mkldnn::memory::format::x);
      auto user_bias_memory_p = handler.AcquireBiasMemory(
          user_bias_md, platform::to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }

    // push primitive to stream and wait until it's executed
    pipeline.push_back(*conv_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
  }

 private:
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu) const {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>
  ConvTransposeFwdPrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      const mkldnn::memory::desc& dst, const std::vector<int>& strides,
      const std::vector<int>& paddings, const mkldnn::engine& engine,
      const bool fuse_relu, mkldnn::prop_kind fwd_prop_kind) const {
    mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
    mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};

    auto deconv_desc = mkldnn::deconvolution_forward::desc(
        fwd_prop_kind, mkldnn::deconvolution_direct, src, weights, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

    mkldnn::primitive_attr deconv_attr = CreatePostOps(fuse_relu);

    auto p_conv_transpose_pd =
        new mkldnn::deconvolution_forward::primitive_desc(deconv_desc,
                                                          deconv_attr, engine);

    return std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>(
        p_conv_transpose_pd);
  }

  std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>
  ConvTransposeFwdPrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      const mkldnn::memory::desc& bias, const mkldnn::memory::desc& dst,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const mkldnn::engine& engine, const bool fuse_relu,
      mkldnn::prop_kind fwd_prop_kind) const {
    mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
    mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};

    auto deconv_desc = mkldnn::deconvolution_forward::desc(
        fwd_prop_kind, mkldnn::deconvolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

    mkldnn::primitive_attr deconv_attr = CreatePostOps(fuse_relu);

    auto p_conv_transpose_pd =
        new mkldnn::deconvolution_forward::primitive_desc(deconv_desc,
                                                          deconv_attr, engine);

    return std::unique_ptr<mkldnn::deconvolution_forward::primitive_desc>(
        p_conv_transpose_pd);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvTransposeMKLDNNOpKernel<float>);