cos_sim_op.cc 6.8 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/cos_sim_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
28
    // notnull check
29 30 31 32 33 34 35 36 37 38
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
                            "Input(Y) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("XNorm"),
                            "Output(XNorm) of CosSimOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("YNorm"),
                            "Output(YNorm) of CosSimOp should not be null.");
39 40 41 42

    // shape check
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
43 44

    PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
45
                      "Ranks of Input(X) and Input(Y) must be equal.");
46
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
47
                      "Rank of Input(X) must not be less than 2.");
48 49 50 51
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
52
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
53 54
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
55 56

    // resize tensor
57 58 59
    ctx.Output<framework::LoDTensor>("Out")->Resize({x_dims[0], 1});
    ctx.Output<framework::LoDTensor>("XNorm")->Resize({x_dims[0], 1});
    ctx.Output<framework::LoDTensor>("YNorm")->Resize({y_dims[0], 1});
X
Xinghai Sun 已提交
60 61 62 63 64 65 66
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
67 68
    AddInput("X", "The 1st input of cos_sim op.");
    AddInput("Y", "The 2nd input of cos_sim op.");
X
Xinghai Sun 已提交
69
    AddOutput("Out", "The output of cos_sim op.");
70 71 72 73 74 75 76 77
    AddOutput("XNorm",
              "Norm of the first input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
    AddOutput("YNorm",
              "Norm of the second input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
78

X
Xinghai Sun 已提交
79 80 81
    AddComment(R"DOC(
Cosine Similarity Operator.

82 83 84 85 86 87
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).

Input(X) and Input(Y) must have the same shape, except that the 1st dimension
of Input(Y) could be just 1 (different from Input(X)), which will be
broadcasted to match the shape of Input(X) before computing their cosine
similarity.
X
Xinghai Sun 已提交
88 89 90 91 92 93 94 95 96 97
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
98
    // notnull check
99 100 101 102 103 104
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
                            "Input(XNorm) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
                            "Input(YNorm) must not be null.");
105 106
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
                            "Input(Out) must not be null.");
X
Xinghai Sun 已提交
107
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
108
                            "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
109

110
    // shape check
X
Xinghai Sun 已提交
111 112
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
113 114
    auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
    auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
115 116 117
    auto out_dims = ctx.Input<Tensor>("Out")->dims();
    auto out_grad_dims =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
118 119 120 121 122 123 124 125 126 127 128 129

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
130 131 132 133
    auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
    auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
    PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
                      "Shape of Input(XNorm) must be [X.Dim(0), 1].");
134 135 136 137 138
    PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
139 140 141
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
142 143 144 145
    auto *x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *y_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
146 147
    if (x_grad) x_grad->Resize(x_dims);
    if (y_grad) y_grad->Resize(y_dims);
X
Xinghai Sun 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
            ops::CosSimOpGrad);
REGISTER_OP_CPU_KERNEL(cos_sim,
                       ops::CosSimKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);