hierarchical_sigmoid_op.h 8.5 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
W
weixing02 已提交
16
#include <iostream>
J
JiabinYang 已提交
17
#include <set>
W
weixing02 已提交
18
#include <vector>
J
JiabinYang 已提交
19
#include "paddle/fluid/framework/mixed_vector.h"
W
weixing02 已提交
20 21 22 23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
Y
Yancey1989 已提交
25 26 27
namespace paddle {
namespace operators {

Y
Yancey1989 已提交
28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Y
Yancey1989 已提交
31
using platform::Transform;
Y
Yancey1989 已提交
32

J
JiabinYang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
std::vector<int64_t> cal_rows(const framework::LoDTensor* path) {
  std::set<int64_t> tmp;
  std::vector<int64_t> rows;
  rows.clear();
  for (size_t i = 0; i < static_cast<size_t>(path->dims()[0]); i++) {
    for (size_t j = 0; j < static_cast<size_t>(path->dims()[1]); j++) {
      int64_t temp =
          path->data<int64_t>()[i * static_cast<size_t>(path->dims()[1]) + j];
      if (temp >= 0) {
        tmp.insert(temp);
      }
    }
  }
  for (std::set<int64_t>::iterator it = tmp.begin(); it != tmp.end(); ++it) {
    rows.push_back(*it);
  }
  return rows;
}

Y
Yancey1989 已提交
52
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
53 54
class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
 public:
Y
Yancey1989 已提交
55
  void Compute(const framework::ExecutionContext& ctx) const override {
J
JiabinYang 已提交
56 57 58 59 60 61 62 63
    auto* in = ctx.Input<framework::LoDTensor>("X");
    auto* w = ctx.Input<framework::LoDTensor>("W");
    auto* path = ctx.Input<framework::LoDTensor>("PTable");
    auto* code = ctx.Input<framework::LoDTensor>("PCode");
    auto* label = ctx.Input<framework::LoDTensor>("Label");
    auto* bias = ctx.Input<framework::LoDTensor>("Bias");
    auto* out = ctx.Output<framework::LoDTensor>("Out");
    auto* pre_out = ctx.Output<framework::LoDTensor>("PreOut");
Y
Yancey1989 已提交
64
    size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
65 66 67 68 69 70 71 72
    bool is_custom = false;
    if (path) {
      is_custom = true;
    } else {
      is_custom = false;
    }
    int64_t code_length =
        path ? path->dims()[1] : math::FindLastSet(num_classes - 1);
Y
Yancey1989 已提交
73
    int64_t batch_size = in->dims()[0];
J
JiabinYang 已提交
74
    framework::LoDTensor sum;
W
weixing02 已提交
75
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
G
guosheng 已提交
76
    auto* pre_out_data = pre_out->mutable_data<T>(
Y
Yancey1989 已提交
77
        framework::make_ddim({batch_size, code_length}), ctx.GetPlace());
W
weixing02 已提交
78
    auto pre_out_mat = EigenMatrix<T>::From(*pre_out);
G
guosheng 已提交
79 80
    // Not all class(leaf) nodes' path lengths equal code_length, thus init as
    // 0s can avoid out of path's loss.
81
    math::SetConstant<DeviceContext, T> zero;
W
weixing02 已提交
82
    zero(dev_ctx, pre_out, static_cast<T>(0.0));
Y
Yancey1989 已提交
83 84
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    math::RowwiseSum<DeviceContext, T> row_sum;
85 86 87 88 89 90 91 92 93

    std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
    if (!is_custom) {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(num_classes,
                                                       label->data<int64_t>()));
    } else {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(path, code,
                                                       label->data<int64_t>()));
    }
Y
Yancey1989 已提交
94

Y
Yancey1989 已提交
95 96
    std::vector<int64_t> sum_dims({batch_size, 1UL});
    sum.mutable_data<T>(framework::make_ddim(sum_dims), ctx.GetPlace());
Y
Yancey1989 已提交
97
    auto sum_mat = EigenMatrix<T>::From(sum);
Y
Yancey1989 已提交
98
    out->mutable_data<T>(ctx.GetPlace());
Y
Yancey1989 已提交
99
    auto out_mat = framework::EigenVector<T>::Flatten(*out);
Y
Yancey1989 已提交
100
    if (bias) {
101
      bit_code->Add(pre_out, *bias);
Y
Yancey1989 已提交
102
    }
103
    bit_code->Mul(pre_out, *w, *in);
G
guosheng 已提交
104
    // clip to [-40, 40]
Y
Yancey1989 已提交
105 106
    Transform<DeviceContext> trans;
    trans(ctx.template device_context<DeviceContext>(), pre_out_data,
W
weixing02 已提交
107
          pre_out_data + pre_out->numel(), pre_out_data,
Y
Yancey1989 已提交
108
          ClipFunctor<T>(static_cast<T>(-40.0), static_cast<T>(40.0)));
109
    bit_code->Sum(*pre_out, out, static_cast<T>(-1));
G
guosheng 已提交
110
    // use softrelu to calculate cross entropy
Y
Yancey1989 已提交
111
    pre_out_mat.device(place) = (static_cast<T>(1.0) + pre_out_mat.exp()).log();
W
weixing02 已提交
112
    row_sum(dev_ctx, *pre_out, &sum);
113 114 115 116
    // TODO(guosheng): Subtract the out of path's loss, since not all
    // class(leaf) nodes' path lengths equal code_length. But it won't break the
    // gradient check since both have the out of path's loss and will cancel out
    // each other.
Y
Yancey1989 已提交
117
    out_mat.device(place) = sum_mat + out_mat;
Y
Yancey1989 已提交
118
  }
Y
Yancey1989 已提交
119 120
};

Y
Yancey1989 已提交
121
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
122 123
class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
 public:
Y
Yancey1989 已提交
124
  void Compute(const framework::ExecutionContext& ctx) const override {
J
JiabinYang 已提交
125 126 127 128 129 130 131 132 133
    auto* in = ctx.Input<framework::LoDTensor>("X");
    auto* w = ctx.Input<framework::LoDTensor>("W");
    auto* path = ctx.Input<framework::LoDTensor>("PTable");
    auto* code = ctx.Input<framework::LoDTensor>("PCode");
    auto* in_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    bool is_sparse = ctx.Attr<bool>("is_sparse");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
W
weixing02 已提交
134
    auto* bias_grad =
J
JiabinYang 已提交
135 136 137
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Bias"));
    auto* label = ctx.Input<framework::LoDTensor>("Label");
    auto* pre_out = ctx.Input<framework::LoDTensor>("PreOut");
W
weixing02 已提交
138
    auto* out_grad =
J
JiabinYang 已提交
139 140
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    framework::LoDTensor pre_out_grad;
141 142 143 144

    pre_out_grad.mutable_data<T>(pre_out->dims(), ctx.GetPlace());
    in_grad->mutable_data<T>(ctx.GetPlace());
    zero(dev_ctx, in_grad, static_cast<T>(0.0));
W
weixing02 已提交
145

Y
Yancey1989 已提交
146
    size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    bool is_custom = false;
    if (path) {
      is_custom = true;
    } else {
      is_custom = false;
    }

    std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
    if (!is_custom) {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(num_classes,
                                                       label->data<int64_t>()));
    } else {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(path, code,
                                                       label->data<int64_t>()));
    }
163

Y
Yancey1989 已提交
164
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
W
weixing02 已提交
165 166
    auto pre_out_mat = EigenMatrix<T>::From(*pre_out);
    auto pre_out_grad_mat = EigenMatrix<T>::From(pre_out_grad);
W
weixing02 已提交
167
    auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
J
JiabinYang 已提交
168

169 170 171 172 173
    Eigen::array<int, 2> bcast({{1, static_cast<int>(pre_out_grad.dims()[1])}});

    // softrelu derivative
    pre_out_grad_mat.device(place) =
        static_cast<T>(1.0) - static_cast<T>(1.0) / pre_out_mat.exp();
174
    bit_code->Sub(&pre_out_grad);  // the gradient of clip(w * x + b)
W
weixing02 已提交
175
    pre_out_grad_mat.device(place) =
176
        pre_out_grad_mat * out_grad_mat.broadcast(bcast);
G
guosheng 已提交
177 178
    // TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
    // be consistent with the clipping in forward.
W
weixing02 已提交
179 180
    if (bias_grad) {
      bias_grad->mutable_data<T>(ctx.GetPlace());
181
      zero(dev_ctx, bias_grad, static_cast<T>(0.0));
182
      bit_code->AddGrad(pre_out_grad, bias_grad);
Y
Yancey1989 已提交
183
    }
J
JiabinYang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
    if (!is_sparse) {
      auto* w_grad =
          ctx.Output<framework::LoDTensor>(framework::GradVarName("W"));
      w_grad->mutable_data<T>(ctx.GetPlace());
      zero(dev_ctx, w_grad, static_cast<T>(0.0));
      bit_code->MulGradWeight(pre_out_grad, w_grad, *in);
    } else {
      framework::Vector<int64_t> real_rows = cal_rows(path);
      auto* w_grad =
          ctx.Output<framework::SelectedRows>(framework::GradVarName("W"));
      w_grad->set_rows(real_rows);
      // build ids -> rows index map
      w_grad->SyncIndex();
J
JiabinYang 已提交
197
      w_grad->set_height(w->dims()[0]);
J
JiabinYang 已提交
198 199 200 201 202 203 204 205
      auto* w_grad_value = w_grad->mutable_value();
      framework::DDim temp_dim(w->dims());
      set(temp_dim, 0, real_rows.size());

      w_grad_value->mutable_data<T>(temp_dim, ctx.GetPlace());
      zero(dev_ctx, w_grad_value, static_cast<T>(0.0));
      bit_code->MulGradWeight(pre_out_grad, w_grad, *in);
    }
206
    bit_code->MulGradError(pre_out_grad, *w, in_grad);
Y
Yancey1989 已提交
207
  }
Y
Yancey1989 已提交
208 209 210 211
};

}  // namespace operators
}  // namespace paddle