framework.py 84.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
Q
qiaolongfei 已提交
27

M
minqiyang 已提交
28
from .. import compat as cpt
29
from .proto import framework_pb2
30
try:
P
peizhilin 已提交
31
    if os.name == 'nt':
P
peizhilin 已提交
32
        import sys
P
peizhilin 已提交
33 34 35 36 37
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

38
    from . import core
39
except ImportError as e:
P
peizhilin 已提交
40
    if os.name == 'nt':
41
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
42
        raise ImportError(
43 44 45 46 47
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
48 49 50 51 52 53
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
54
except Exception as e:
55
    raise e
56
from . import unique_name
Y
Yu Yang 已提交
57

58
__all__ = [
59 60 61 62
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
63
    'name_scope',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

72
_imperative_tracer_ = None
M
minqiyang 已提交
73
_imperative_current_expected_place_ = None
74 75 76 77 78 79 80 81 82


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
83

M
minqiyang 已提交
84
def _current_expected_place():
M
minqiyang 已提交
85
    return _imperative_current_expected_place_
M
minqiyang 已提交
86 87


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
114
@signature_safe_contextmanager
115 116 117 118 119 120 121 122 123 124 125 126
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
127

128 129 130 131
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
132 133
          with name_scope("attention"):
             ...
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
153 154 155
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
156 157 158 159


def grad_var_name(var_name):
    """
160 161
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
162 163 164
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
165

166
def convert_np_dtype_to_dtype_(np_dtype):
167 168
    """
    Convert the data type in numpy to the data type in Paddle
169

170
    Args:
171
        np_dtype(np.dtype): the data type in numpy.
172

173 174
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
175 176

    """
177 178
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
179
        return core.VarDesc.VarType.FP32
180
    elif dtype == np.float64:
181
        return core.VarDesc.VarType.FP64
182
    elif dtype == np.float16:
183
        return core.VarDesc.VarType.FP16
184
    elif dtype == np.int32:
185
        return core.VarDesc.VarType.INT32
186
    elif dtype == np.int16:
187
        return core.VarDesc.VarType.INT16
188
    elif dtype == np.int64:
189
        return core.VarDesc.VarType.INT64
190
    elif dtype == np.bool:
191
        return core.VarDesc.VarType.BOOL
192 193
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
194 195
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
196 197
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
198
    else:
M
minqiyang 已提交
199
        raise ValueError("Not supported numpy dtype %s" % dtype)
200 201 202


def dtype_is_floating(dtype):
203 204 205
    """
    Check the data type is floating or not.
    Args:
206
        dtype(np.dtype|core.VarDesc.VarType): data type.
207 208 209 210 211
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
212
    if not isinstance(dtype, core.VarDesc.VarType):
213 214
        dtype = convert_np_dtype_to_dtype_(dtype)

215 216 217 218
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
219 220


Y
Yang Yang(Tony) 已提交
221
def _debug_string_(proto, throw_on_error=True):
222 223 224 225 226 227 228 229 230 231 232
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
233
    error_fields = list()
Y
Yang Yang(Tony) 已提交
234
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
235 236
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
237 238 239
    return proto.__str__()


X
Xin Pan 已提交
240
class Variable(object):
241
    """
242 243 244
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
245
    two variables in different blocks could have the same name.
246

247 248
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
249

250
    Most of a Variable's member variables can be setted to be None. It mean
251
    it is not available or will be specified later.
252 253

    Args:
254
        block(Block): The block that the variable belongs to.
255 256
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
257 258
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
259
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
260
            Some kinds of variable do not contain shape, just set it to None.
261 262 263
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
264
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
265
            series data.
266
            Default: None
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
289 290
    """

Y
Yu Yang 已提交
291 292
    def __init__(self,
                 block,
Y
Yu Yang 已提交
293
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
294 295 296 297
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
298
                 capacity=None,
Q
QI JUN 已提交
299
                 persistable=None,
F
fengjiayi 已提交
300
                 error_clip=None,
Y
Yu Yang 已提交
301
                 stop_gradient=False,
F
fengjiayi 已提交
302
                 is_data=False,
Y
Yu Yang 已提交
303
                 **kwargs):
Y
Yu Yang 已提交
304
        self.block = block
F
fengjiayi 已提交
305
        self.error_clip = error_clip
Y
Yu Yang 已提交
306 307

        if name is None:
Y
Yu Yang 已提交
308
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
309
        is_new_var = False
M
minqiyang 已提交
310
        name = cpt.to_text(name)
M
minqiyang 已提交
311
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
312 313

        if self.desc is None:
M
minqiyang 已提交
314
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
315
            is_new_var = True
Y
Yu Yang 已提交
316

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
325
        if shape is not None:
Y
Yu Yang 已提交
326
            if is_new_var:
327
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
336
        if dtype is not None:
337
            if not isinstance(dtype, core.VarDesc.VarType):
338
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
339
            if is_new_var:
F
fengjiayi 已提交
340
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
341
            else:
F
fengjiayi 已提交
342
                old_dtype = self.dtype
Q
QI JUN 已提交
343
                if dtype != old_dtype:
Y
Yu Yang 已提交
344 345 346 347 348
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
349 350

        if lod_level is not None:
Y
Yu Yang 已提交
351
            if is_new_var:
352
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
353 354 355 356 357 358 359
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
360 361 362 363 364 365 366 367 368 369 370
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

371 372 373 374 375 376 377 378
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
379
        self.block.vars[name] = self
Y
Yu Yang 已提交
380
        self.op = None
M
minqiyang 已提交
381
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
382
        self.is_data = is_data
X
Xin Pan 已提交
383
        if _in_imperative_mode():
M
minqiyang 已提交
384 385 386
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
387
            self._ivar.desc = self.desc
388
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
389

390
    def _numpy(self):
M
minqiyang 已提交
391
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
392
        return np.array(new_ivar.value().get_tensor())
393 394

    def _backward(self):
X
Xin Pan 已提交
395
        self._ivar._run_backward()
396 397

    def _gradient(self):
M
minqiyang 已提交
398
        return np.array(self._ivar._grad_value())
399

X
Xin Pan 已提交
400 401
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
402

403
    def __str__(self):
Y
Yang Yang(Tony) 已提交
404 405
        return self.to_string(True)

F
update  
fengjiayi 已提交
406
    def to_string(self, throw_on_error, with_details=False):
407 408 409 410
        """
        Get debug string.

        Args:
411 412
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
413
            with_details(bool): more details about variables and parameters
414 415
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
416

417 418
        Returns:
            str: The debug string.
419
        """
F
update  
fengjiayi 已提交
420 421
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
422
        protostr = self.desc.serialize_to_string()
423
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
424 425 426 427
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
428 429
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
430
        return res_str
431 432 433

    __repr__ = __str__

W
Wu Yi 已提交
434
    def _set_desc(self, input):
435 436 437 438 439 440 441 442 443
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
444 445
        self.desc = input

446 447
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
448 449 450 451
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
452 453 454

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
455 456 457
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
458

459 460 461 462
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
463 464 465 466
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
467 468
    @property
    def name(self):
M
minqiyang 已提交
469
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
470

T
typhoonzero 已提交
471 472 473 474
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
475 476 477
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
478
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
479 480

    @property
F
fengjiayi 已提交
481 482
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
483 484 485

    @property
    def lod_level(self):
486
        return self.desc.lod_level()
Y
Yu Yang 已提交
487

Y
Yu Yang 已提交
488 489 490 491
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
492
    def _set_error_clip(self, error_clip):
493 494 495 496 497 498 499 500 501
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
502 503
        self.error_clip = error_clip

Y
Yu Yang 已提交
504

F
fengjiayi 已提交
505 506 507
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
508

509 510
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
511 512 513 514
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
515
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
516 517 518 519 520
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
521 522 523 524
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
525 526 527 528 529 530 531 532 533
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
534
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
535 536 537 538 539 540
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
541 542 543 544 545 546 547 548
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
549 550
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
551 552
        return self.op_proto_map[type]

553 554 555 556
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
557
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
S
sneaxiy 已提交
558 559
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
560 561
        }

F
fengjiayi 已提交
562

X
Xin Pan 已提交
563
class Operator(object):
564
    """
565 566 567 568 569 570 571
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
572
        type(str): The type of operator. Default None.
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
593
        Block.append_op or Block._prepend_op instead.
594 595 596 597 598 599 600 601 602 603

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
604
    """
605 606 607
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
608 609
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
610
    }
611

Y
Yu Yang 已提交
612 613
    def __init__(self,
                 block,
Y
Yu Yang 已提交
614
                 desc,
Y
Yu Yang 已提交
615 616 617
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
618
                 attrs=None):
Y
Yu Yang 已提交
619
        self.block = block
Y
Yu Yang 已提交
620
        self.desc = desc
G
gongweibao 已提交
621 622 623 624 625
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
626 627 628 629
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
630 631
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
632 633 634

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
635 636
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
637

G
gongweibao 已提交
638 639
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
640

F
fengjiayi 已提交
641 642 643 644 645
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
646 647 648 649 650
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
651
        self.desc.set_type(type)
F
fengjiayi 已提交
652
        proto = OpProtoHolder.instance().get_op_proto(type)
653

654 655 656
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
657 658
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
659
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
660 661
                    return True
            return False
Q
QI JUN 已提交
662

Y
Yang Yang(Tony) 已提交
663 664 665 666 667 668 669
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
670 671 672 673
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
674 675
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
676 677 678
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
679
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
680
                            in_arg_names.append(arg)
681 682
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
683
                        else:
M
minqiyang 已提交
684
                            in_arg_names.append(cpt.to_text(arg.name))
685
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
686 687
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
688

Y
Yu Yang 已提交
689
        if outputs is not None:
690
            for m in proto.outputs:
Q
qingqing01 已提交
691 692 693 694 695 696
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
697
            for out_proto in proto.outputs:
Q
qingqing01 已提交
698 699
                if out_proto.name not in outputs:
                    continue
700 701 702 703
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
704 705
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
706 707 708
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
709
                    out_arg_names.append(cpt.to_text(arg.name))
710 711
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
712

G
gongweibao 已提交
713 714
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
715
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
716
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
717
                attr_name = attr.name
G
gongweibao 已提交
718
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
719
                    continue
G
gongweibao 已提交
720
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
721 722
                self._update_desc_attr(attr_name, attr_val)

723
        self.desc.check_attrs()
M
minqiyang 已提交
724

W
Wu Yi 已提交
725
        if self._has_kernel(type):
Q
QI JUN 已提交
726
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
727
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
728

X
Xin Pan 已提交
729 730 731
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
732
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
733
            if inputs is not None:
X
Xin Pan 已提交
734 735 736 737 738 739
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
740
            if outputs is not None:
X
Xin Pan 已提交
741 742 743 744 745
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
746

W
Wu Yi 已提交
747
    def _has_kernel(self, op_type):
748 749
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
750
    def to_string(self, throw_on_error):
751
        """
752 753
        Get debug string.

754
        Args:
755 756
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
757

758 759
        Returns:
            str: The debug string.
760 761

        """
762
        protostr = self.desc.serialize_to_string()
763
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
764 765 766 767
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
768 769 770

    __repr__ = __str__

F
fengjiayi 已提交
771 772 773 774 775
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
776
        """
777
        Get the input arguments according to the input parameter name.
778

779 780
        Args:
            name(str): The input parameter name.
781

782 783 784
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
785
        """
F
fengjiayi 已提交
786 787
        return self.desc.input(name)

W
Wu Yi 已提交
788
    def _rename_input(self, old_name, new_name):
789 790 791 792 793 794 795 796 797 798
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
799
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
800

W
Wu Yi 已提交
801
    def _rename_output(self, old_name, new_name):
802 803 804 805 806 807 808 809 810 811
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
812
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
813

F
fengjiayi 已提交
814 815 816 817
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
818 819 820 821 822 823 824 825
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
826
    def output(self, name):
827
        """
828
        Get output arguments by the output parameter name.
829

830 831
        Args:
            name(str): The output parameter name.
832

833 834 835
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
836
        """
F
fengjiayi 已提交
837 838 839 840 841 842
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

843 844 845 846 847 848 849 850
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
851
    def has_attr(self, name):
852
        """
853 854
        Whether this Operator has the attribute with name or not.

855
        Args:
856
            name(str): the attribute name.
857

858 859
        Returns:
            bool: True if has this attribute.
860 861

        """
F
fengjiayi 已提交
862 863 864
        return self.desc.has_attr(name)

    def attr_type(self, name):
865
        """
866
        Get the type of attribute by attribute's name.
867

868 869
        Args:
            name(str): the attribute name.
870

871 872
        Returns:
            core.AttrType: the attribute type.
873
        """
F
fengjiayi 已提交
874 875
        return self.desc.attr_type(name)

W
Wu Yi 已提交
876
    def _set_attr(self, name, val):
877 878 879 880 881 882 883 884 885 886
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
900 901
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
902 903
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
904
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
905 906 907 908
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
909
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
910

F
fengjiayi 已提交
911 912 913 914 915
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
916
        """
917 918
        Get the attribute by name.

919
        Args:
920
            name(str): the attribute name.
921

922 923
        Returns:
            bool|int|str|float|list: The attribute value. The return value
924 925
            can be any valid attribute type.
        """
F
fengjiayi 已提交
926
        return self.desc.attr(name)
Y
Yu Yang 已提交
927

W
Wu Yi 已提交
928
    def _block_attr_id(self, name):
929
        """
G
gongweibao 已提交
930
        Get the block attribute's id by name.
931

932 933
        Args:
            name(str): the attribute name.
934

935 936
        Returns:
            int: the block index.
937
        """
W
Wu Yi 已提交
938
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
939

W
Wu Yi 已提交
940
    def _block_attr(self, name):
G
gongweibao 已提交
941 942 943 944 945 946 947 948 949 950
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
951
        id = self._block_attr_id(name)
G
gongweibao 已提交
952 953 954
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
955
    def _blocks_attr(self, name):
G
gongweibao 已提交
956 957 958 959 960 961 962 963 964 965
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
966
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
967 968 969 970 971
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
972
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
973 974 975 976 977 978 979 980 981 982
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
983
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
984

J
JiayiFeng 已提交
985
    def all_attrs(self):
F
fengjiayi 已提交
986
        """
987 988 989
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
990
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
991 992 993 994
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
995 996
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
997
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
998 999 1000
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1001
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1002 1003 1004 1005
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1006 1007
        return attr_map

Y
Yu Yang 已提交
1008

Y
Yu Yang 已提交
1009
class Block(object):
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1024
        use `Program._create_block()` to create a block.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1039
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1040
        self.desc = program.desc.block(idx)
1041
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1042
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1043
        self.program = program
1044
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1045

1046
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1047 1048
        return self.to_string(True)

F
fengjiayi 已提交
1049 1050
    def to_string(self, throw_on_error, with_details=False):
        """
1051 1052
        Get debug string.

F
fengjiayi 已提交
1053 1054
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1055
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1056
            with_details(bool): more details about variables and parameters
1057 1058
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1059

1060 1061
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1062 1063 1064 1065
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1066
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1067 1068
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1069
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1070
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1071
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1072
            for op in self.ops:
F
fengjiayi 已提交
1073 1074
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1075 1076 1077
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1078 1079
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1080 1081
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1082 1083 1084

    __repr__ = __str__

Y
Yu Yang 已提交
1085 1086
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1087
        return self.desc.parent
Y
Yu Yang 已提交
1088

Y
Yu Yang 已提交
1089 1090 1091 1092
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1093
    def _set_forward_block_idx(self, idx):
1094 1095 1096 1097 1098 1099 1100 1101 1102
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1103
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1104

Y
Yu Yang 已提交
1105 1106
    @property
    def idx(self):
Y
Yu Yang 已提交
1107
        return self.desc.id
Y
Yu Yang 已提交
1108

Q
Qiao Longfei 已提交
1109
    def var(self, name):
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1123
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1124 1125 1126
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1127 1128
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1129
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1130
        return v
Q
Qiao Longfei 已提交
1131

X
Xin Pan 已提交
1132
    def _find_var_recursive(self, name):
1133 1134 1135 1136 1137 1138 1139
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1140
            Variable: the Variable with the giving name. Or None if not found.
1141
        """
Y
Yu Yang 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1166
        return None
Y
Yu Yang 已提交
1167

X
Xin Pan 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1187

Q
Qiao Longfei 已提交
1188
    def all_parameters(self):
1189
        return list(self.iter_parameters())
1190

1191
    def iter_parameters(self):
M
minqiyang 已提交
1192
        return (item[1] for item in six.iteritems(self.vars)
1193
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1194

Y
Yu Yang 已提交
1195
    def create_var(self, *args, **kwargs):
1196
        var = Variable(block=self, *args, **kwargs)
1197 1198
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1199
        return var
Y
Yu Yang 已提交
1200

Q
Qiao Longfei 已提交
1201 1202 1203
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1204
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1205 1206
        """
        Rename variable in vars and ops' inputs and outputs
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1219
        """
M
minqiyang 已提交
1220 1221
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1222

T
typhoonzero 已提交
1223
        if not self.has_var(name):
1224
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1225 1226
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1227
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1228 1229 1230 1231 1232 1233 1234
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1235
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1236 1237 1238 1239
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1240
        orig_var_type = v.type
M
minqiyang 已提交
1241
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1242
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1243
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1244
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1245 1246 1247 1248
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1249
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1250 1251 1252 1253 1254 1255 1256
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1257
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1258 1259
            var = Variable(
                self,
T
typhoonzero 已提交
1260
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1261 1262 1263 1264
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1265
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1266 1267 1268
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1269
        self._sync_with_cpp()
1270
        return var
T
typhoonzero 已提交
1271

W
Wu Yi 已提交
1272 1273
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1274
        self.desc._remove_var(cpt.to_bytes(name))
1275 1276
        del self.vars[name]

Y
Yu Yang 已提交
1277 1278
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1279
        param = Parameter(global_block, *args, **kwargs)
1280
        if 'initializer' in kwargs:
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1301
        return param
Y
Yu Yang 已提交
1302

Y
Yu Yang 已提交
1303
    def append_op(self, *args, **kwargs):
1304 1305 1306 1307 1308 1309
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1310
        op_desc = self.desc.append_op()
1311 1312 1313 1314 1315 1316 1317 1318
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1319

M
minqiyang 已提交
1320 1321
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1322 1323 1324 1325
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1326
        if _in_imperative_mode():
1327
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1328 1329
                                       _imperative_current_expected_place_,
                                       stop_gradient)
Y
Yu Yang 已提交
1330

W
Wu Yi 已提交
1331
    def _insert_op(self, index, *args, **kwargs):
1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1341 1342
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1343 1344 1345 1346
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1347
    def _remove_op(self, index):
1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1357 1358
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1359 1360
        del self.ops[index]

W
Wu Yi 已提交
1361
    def _slice_ops(self, start, end):
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1372
        return self.ops[start:end]
Y
Yancey1989 已提交
1373

W
Wu Yi 已提交
1374 1375
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1376 1377 1378 1379 1380 1381 1382
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1383
        self.ops.insert(0, op)
1384
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1385 1386
        return op

W
Wu Yi 已提交
1387
    def _sync_with_cpp(self):
1388
        """
1389 1390
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1391
        """
Q
Qiao Longfei 已提交
1392 1393 1394 1395 1396
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1397
        # sync variables removed from c++ end
1398
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1399
            if not self.desc.find_var(cpt.to_bytes(var)):
1400 1401
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1402
        # sync operators from cpp
1403 1404 1405 1406
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1423 1424 1425 1426 1427

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1428
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1429 1430 1431 1432 1433 1434 1435

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1449 1450 1451 1452
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1453
    def _copy_param_info_from(self, other):
1454
        """
1455 1456
        Copy the information of parameters from the other block.

1457
        Args:
1458 1459 1460 1461 1462
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1463 1464 1465 1466 1467

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1468 1469
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1470
        for p in other.iter_parameters():
1471 1472 1473
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1474
                raise ValueError("_copy_param_info_from should be invoked with "
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1487
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1488
                error_clip=p.error_clip,
1489 1490 1491
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1492
    def _clone_variable(self, var):
1493 1494
        """
        Clone a variable into current block.
1495

1496 1497 1498 1499
        Args:
            var: the variable to be cloned.

        Returns:
1500
            Variable: the new  variable cloned from 'var' in current block.
1501 1502
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1503 1504 1505 1506 1507
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1508 1509
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1510
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1511 1512 1513 1514 1515 1516
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1517 1518
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1519 1520 1521 1522 1523 1524 1525
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1526 1527
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1528
        return ret_var
1529

Y
Yu Yang 已提交
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
class IrGraph(object):
    """
    IrGraph uses core.Graph as the delegation to accomplish the manipulation.
    """

    def __init__(self, graph, for_test=False):
        """
        Construct the IrGraph using core.Graph.
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
        return self._for_test

    def all_parameters(self):
        param_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                param_nodes.add(node)
        return param_nodes

    def all_vars(self):
        return {node for node in self.graph.nodes() if node.is_var()}

    def all_ops(self):
        return {node for node in self.graph.nodes() if node.is_op()}

    def create_param_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
        assert old_input_node in self.graph.nodes() and new_input_node in self.graph.nodes() and \
            op_node in self.graph.nodes(), 'Th three arguments must be in the graph nodes.'
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
            'Th two arguments must be in the graph nodes.'
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
        if not isinstance(remove_nodes, set):
            remove_nodes = set(remove_nodes)
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

    def draw(self, save_path, name, marked_nodes=None):
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

        remove_ctr_vars = set()
        ops_num = 0
        for node in self.graph.nodes():
            if node.is_ctrl_var():
                remove_ctr_vars.add(node)
            elif node.is_op():
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        self.safe_remove_nodes(remove_ctr_vars)
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
        convert_pass = core.get_pass('graph_to_program_pass')
        convert_pass.set('program', Program().desc)
        convert_pass.apply(self.graph)
        desc = convert_pass.get_program('program')
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1679
class Program(object):
D
dzhwinter 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1691
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1692 1693

    Returns:
Y
yuyang18 已提交
1694
        A empty program.
D
dzhwinter 已提交
1695 1696

    Examples:
Y
yuyang18 已提交
1697 1698 1699 1700 1701 1702
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1703 1704 1705

    """

1706 1707
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1708 1709
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1710
        self._seed = 0
Y
yuyang18 已提交
1711
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1712
        self._op_role_var = []
T
tangwei12 已提交
1713

1714 1715
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1716
        self._is_distributed = False
1717
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1718
        self._is_chief = False
1719 1720 1721
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1722
        self._endpoints = []
1723 1724 1725
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1726
        self._trainers_endpoints = []
1727
        # the distributed lookup table names
T
tangwei12 已提交
1728
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1729
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1730
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1731
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1732 1733

    @property
D
dzhwinter 已提交
1734
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1735 1736
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1737
        return self.__is_mem_optimized
D
dzhwinter 已提交
1738

D
dzhwinter 已提交
1739 1740 1741
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1742 1743 1744

    @property
    def op_role(self):
Y
yuyang18 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1758 1759 1760
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1761
    def op_role(self, role):
Y
yuyang18 已提交
1762 1763 1764 1765
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1766 1767 1768 1769 1770 1771 1772
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1773 1774 1775 1776
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1777
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1778

S
rename  
sneaxiy 已提交
1779
    @signature_safe_contextmanager
W
Wu Yi 已提交
1780
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1781 1782 1783 1784 1785 1786 1787
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1788
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1789 1790 1791 1792

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1793
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1794 1795
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1796 1797 1798
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1799 1800
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1801 1802 1803 1804
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1805
        yield
X
Xin Pan 已提交
1806 1807
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1808

S
rename  
sneaxiy 已提交
1809
    @signature_safe_contextmanager
X
Xin Pan 已提交
1810
    def _lr_schedule_guard(self, is_with_opt=False):
1811 1812 1813 1814 1815 1816 1817
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1818 1819 1820 1821
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1822 1823 1824 1825 1826 1827 1828

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1829 1830 1831 1832

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1833 1834
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1835 1836
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1837 1838 1839
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1840 1841
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1842

1843
    def __str__(self):
Y
yuyang18 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1853 1854
        return self.to_string(True)

F
fengjiayi 已提交
1855 1856 1857
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1858

F
fengjiayi 已提交
1859
        Args:
Y
yuyang18 已提交
1860 1861
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1862

Y
yuyang18 已提交
1863 1864 1865 1866
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1867 1868
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1869 1870 1871 1872

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1883 1884
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1885 1886
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1887

W
Wu Yi 已提交
1888
    def _get_desc(self):
Y
yuyang18 已提交
1889 1890 1891 1892 1893 1894 1895
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1896 1897
        return self.desc

X
version  
Xin Pan 已提交
1898 1899 1900
    def _version(self):
        return self.desc._version()

1901
    def clone(self, for_test=False):
Y
yuyang18 已提交
1902 1903 1904
        """
        Create a new, duplicated program.

1905

Y
yuyang18 已提交
1906 1907 1908 1909
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1910

Y
yuyang18 已提交
1911 1912 1913 1914
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1915 1916 1917 1918 1919
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1920 1921

        Args:
Y
yuyang18 已提交
1922 1923
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1924

D
dzhwinter 已提交
1925
        Returns:
Y
yuyang18 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1979 1980
        """
        if for_test:
X
Xin Pan 已提交
1981
            p = self._inference_optimize(prune_read_op=False)
1982
        else:
1983
            p = Program()
G
gongweibao 已提交
1984 1985
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1986
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1987 1988 1989
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1990 1991 1992 1993

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1994
            p._sync_with_cpp()
1995

W
Wu Yi 已提交
1996
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1997
        p._copy_data_info_from(self)
1998
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1999
        return p
2000

W
Wu Yi 已提交
2001
    def _prune(self, targets):
Y
yuyang18 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2017 2018 2019 2020 2021 2022
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2023 2024
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2025
                    # and we need to find the current op that generate this
2026 2027 2028 2029 2030 2031 2032 2033
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2034
                    t = t.op
2035 2036 2037 2038
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2039
                else:
2040 2041
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2042 2043 2044 2045

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2046 2047 2048
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2049
        res._sync_with_cpp()
2050 2051
        return res

X
Xin Pan 已提交
2052
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2053
        """
F
fengjiayi 已提交
2054 2055 2056 2057 2058
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2059
        3. change the :code:`is_test`
Y
yuyang18 已提交
2060 2061 2062
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2063
        Args:
X
Xin Pan 已提交
2064 2065
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2066

Y
yuyang18 已提交
2067 2068 2069 2070 2071 2072
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2073
        res = Program()
2074
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2075 2076 2077 2078

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2079
        if prune_read_op:
2080 2081 2082 2083 2084 2085 2086 2087 2088
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2089
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2090 2091

        # change all `is_test` attributes to True
M
minqiyang 已提交
2092
        for i in six.moves.range(res.desc.num_blocks()):
2093
            block = res.desc.block(i)
M
minqiyang 已提交
2094
            for j in six.moves.range(block.op_size()):
2095 2096
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2097
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2098 2099 2100
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2101
        res._sync_with_cpp()
2102 2103
        return res

2104 2105
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2106 2107 2108 2109 2110 2111 2112
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2113
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2114 2115 2116 2117

        Returns:
            Program: A deserialized program desc.
        """
2118 2119
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2120
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2121
        p._sync_with_cpp()
2122
        return p
Y
Yu Yang 已提交
2123

2124
    @staticmethod
2125
    def _construct_from_desc(desc):
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2141 2142
    @property
    def random_seed(self):
Y
yuyang18 已提交
2143 2144 2145 2146 2147 2148
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2149 2150
        return self._seed

Q
qiaolongfei 已提交
2151 2152
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2153 2154 2155
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2156 2157
        return self.desc.num_blocks()

D
dzhwinter 已提交
2158 2159 2160 2161 2162 2163
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2164
    def __repr__(self):
2165
        return self.__str__()
2166

Y
Yu Yang 已提交
2167
    def global_block(self):
Y
yuyang18 已提交
2168 2169 2170
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2171 2172
        return self.blocks[0]

Q
Qiao Longfei 已提交
2173
    def block(self, index):
Y
yuyang18 已提交
2174 2175 2176 2177 2178 2179 2180 2181
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2182 2183
        return self.blocks[index]

Y
Yu Yang 已提交
2184
    def current_block(self):
Y
yuyang18 已提交
2185 2186 2187 2188
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2189 2190
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2191
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2202
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2203 2204 2205
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2206 2207 2208 2209
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2210
    def _rollback(self):
Y
yuyang18 已提交
2211 2212 2213 2214 2215
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2216 2217
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2218
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2229 2230 2231
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2232
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2233

W
Wu Yi 已提交
2234
    def _copy_param_info_from(self, other):
2235
        """
2236
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2237

Y
yuyang18 已提交
2238 2239 2240
        Notes: This is a very low level API. Users should not invoke it
        directly.

2241 2242 2243 2244 2245 2246 2247
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2248
            raise TypeError("_copy_param_info_from should be invoked with "
2249 2250 2251
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2252
            raise ValueError("_copy_param_info_from should be invoked with two "
2253
                             "program, with represent the same topology")
W
Wu Yi 已提交
2254
        self.global_block()._copy_param_info_from(other.global_block())
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2271
        self._parameters_on_pservers = other._parameters_on_pservers
2272
        self._endpoints = other._endpoints
2273
        self._ps_endpoint = other._ps_endpoint
2274 2275
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2276
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2277 2278
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2279

Y
yuyang18 已提交
2280 2281 2282
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2283 2284 2285 2286 2287 2288 2289
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2290
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2291 2292 2293
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2294
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2295
                             "program, with represent the same topology")
2296
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2297 2298 2299
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2300
    def list_vars(self):
Y
yuyang18 已提交
2301 2302 2303 2304 2305 2306
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2307
        for each_block in self.blocks:
2308
            for each_var in list(each_block.vars.values()):
2309 2310
                yield each_var

Y
Yu Yang 已提交
2311

Y
Yu Yang 已提交
2312
class Parameter(Variable):
2313
    """
2314
    Parameter is derived from Variable. A parameter is a persistable
2315
    Variable, and will be updated by optimizers after each iteration.
2316
    The training of a neural network is essentially the updating of
2317 2318
    its parameters.

2319
    Relative to a general Variable, a Parameter has several its own
2320 2321
    member variables:

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2334 2335
    """

Y
Yu Yang 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2346 2347 2348

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2349 2350 2351 2352
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2353 2354
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2355
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2356

W
wanghaoshuang 已提交
2357
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2358

F
fengjiayi 已提交
2359 2360 2361
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2362 2363 2364
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2365

F
update  
fengjiayi 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2380
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2381
            for attr_name in additional_attr:
2382 2383
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2384 2385
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2386 2387 2388 2389
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2390

Y
Yu Yang 已提交
2391
# program is a global instance.
Y
Yu Yang 已提交
2392 2393
_main_program_ = Program()
_startup_program_ = Program()
2394

2395

2396
def default_startup_program():
Y
Yu Yang 已提交
2397
    """
Y
yuyang18 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2407

Y
Yu Yang 已提交
2408 2409 2410
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2411
    return _startup_program_
2412

2413

2414
def default_main_program():
Y
Yu Yang 已提交
2415
    """
Y
yuyang18 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2425

Y
Yu Yang 已提交
2426 2427 2428
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2429
    return _main_program_
Y
Yu Yang 已提交
2430 2431 2432 2433 2434


def switch_main_program(program):
    """
    Switch the main program to a new program.
2435

Y
Yu Yang 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2450
    Switch the startup program to a new program
Y
Yu Yang 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2463
@signature_safe_contextmanager
Y
Yu Yang 已提交
2464 2465
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2466 2467 2468
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2469

Y
Yu Yang 已提交
2470
    Examples:
Y
yuyang18 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2481

Y
Yu Yang 已提交
2482
    Examples:
Y
yuyang18 已提交
2483 2484 2485 2486 2487 2488

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2489

Y
Yu Yang 已提交
2490
    Args:
Y
yuyang18 已提交
2491
        main_program(Program): New main program inside `with` statement.
2492
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2506 2507


W
Wu Yi 已提交
2508
def _get_var(name, program=None):
X
xuwei06 已提交
2509
    """
Y
yuyang18 已提交
2510
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2511

X
xuwei06 已提交
2512 2513 2514
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2515
        If None, default_global_program() will be used.
X
xuwei06 已提交
2516 2517 2518 2519 2520 2521 2522

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2523
    assert isinstance(program, Program)
X
xuwei06 已提交
2524 2525

    return program.global_block().var(name)
2526 2527


S
rename  
sneaxiy 已提交
2528
@signature_safe_contextmanager
P
Paddle CI 已提交
2529
def _imperative_guard(tracer):
2530 2531 2532
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2533

P
Paddle CI 已提交
2534 2535 2536 2537 2538
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2539
@signature_safe_contextmanager
P
Paddle CI 已提交
2540
def _imperative_place_guard(place):
M
minqiyang 已提交
2541 2542 2543
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2544

2545
    yield
M
minqiyang 已提交
2546

M
minqiyang 已提交
2547
    _imperative_current_expected_place_ = tmp_place