pool_op.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
fix doc  
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
fix doc  
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("globalPooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}

void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
75
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
76 77 78
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
79
  AddOutput("Out",
K
kexinzhao 已提交
80 81 82 83 84
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
85

C
fix doc  
chengduoZH 已提交
86
  AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
87 88
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
89
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
90
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
91 92
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
fix bug  
chengduoZH 已提交
93 94 95
                            "If globalPooling = true, ksize and paddings will "
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
96
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
97
  AddAttr<bool>("globalPooling",
K
kexinzhao 已提交
98
                "(bool, default false) Whether to use the global pooling. "
C
fix bug  
chengduoZH 已提交
99
                "If globalPooling = true, ksize and paddings will be ignored.")
100
      .SetDefault(false);
K
kexinzhao 已提交
101 102 103
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
104
      .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
105 106 107
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
K
kexinzhao 已提交
108 109
      "(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
      "operator."
C
fix bug  
chengduoZH 已提交
110
      "If globalPooling = true, paddings and ksize will be ignored.")
111
      .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
112
  // TypedAttrChecker don't support vector type.)
113 114

  AddComment(R"DOC(
K
kexinzhao 已提交
115 116
Pool2d Operator.

C
chengduoZH 已提交
117
The pooling2d operation calculates the output based on
118
the input, poolingType and ksize, strides, paddings parameters.
K
kexinzhao 已提交
119 120
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
121 122
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
123 124 125 126
The input(X) size and output(Out) size may be different.

Example:
  Input:
K
kexinzhao 已提交
127
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
128
  Output:
K
kexinzhao 已提交
129 130 131 132 133 134 135
       Out shape: $(N, C, H_{out}, W_{out})$
  where 
       $$ 
       H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
       W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
       $$

136
)DOC");
137 138 139 140 141
}

Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
142 143 144 145 146 147
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
148
  AddOutput("Out",
C
chengduoZH 已提交
149
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
150 151 152 153
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
154

C
fix doc  
chengduoZH 已提交
155
  AddAttr<std::string>("poolingType",
K
kexinzhao 已提交
156
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
157
                       "and \"avg\" for average-pooling.")
158
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
159 160 161 162 163 164 165
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
      "If globalPooling = true, ksize and paddings will "
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
166
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
167
  AddAttr<bool>("globalPooling",
K
kexinzhao 已提交
168
                "(bool, default false) Whether to use the global pooling. "
C
fix bug  
chengduoZH 已提交
169
                "If globalPooling = true, ksize and paddings wille be ignored.")
170
      .SetDefault(false);
K
kexinzhao 已提交
171 172 173 174
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
175 176
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
177 178
  AddAttr<std::vector<int>>(
      "paddings",
K
kexinzhao 已提交
179 180 181
      "(vector<int>, defalut {0,0,0}), paddings(depth, height, "
      "width) of pooling operator. "
      "If globalPooling = true, ksize and paddings will be ignored.")
182 183 184 185
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
K
kexinzhao 已提交
186 187
Pool3d Operator.

C
chengduoZH 已提交
188
The pooling3d operation calculates the output based on
K
kexinzhao 已提交
189 190 191 192 193 194
the input, poolingType, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
195 196 197

Example:
  Input:
K
kexinzhao 已提交
198
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
199
  Output:
K
kexinzhao 已提交
200
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
201
  where
K
kexinzhao 已提交
202 203 204 205 206 207
       $$
       D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
       H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
       W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
       $$

208
)DOC");
209
}
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);