batch_norm_op.cu.cc 11.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
Qiao Longfei 已提交
16
#include <cfloat>
S
Siddharth Goyal 已提交
17
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
20
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
26
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
27 28
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
29
template <typename T>
K
update  
Kexin Zhao 已提交
30
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
31

Q
QI JUN 已提交
32 33
void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout,
                  int *N, int *C, int *H, int *W, int *D) {
Q
Qiao Longfei 已提交
34
  *N = dims[0];
35 36 37 38 39 40
  if (dims.size() == 2) {
    *C = dims[1];
    *H = 1;
    *W = 1;
    *D = 1;
  } else {
Q
QI JUN 已提交
41 42
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
43
    *W = dims.size() > 3
Q
QI JUN 已提交
44
             ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2])
45 46
             : 1;
    *D = dims.size() > 4
Q
QI JUN 已提交
47
             ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3])
48 49
             : 1;
  }
Q
Qiao Longfei 已提交
50 51 52
}

template <typename T>
Q
QI JUN 已提交
53 54
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
55 56 57
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
58
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
59 60 61
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
62 63 64
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
65 66 67 68 69

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
70 71
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
72
    int N, C, H, W, D;
Q
QI JUN 已提交
73
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

    VLOG(1) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
99
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
100 101 102 103 104 105 106 107 108
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
109
    // Note: PERSISTENT not implemented for inference
Q
Qiao Longfei 已提交
110
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
K
Kexin Zhao 已提交
111
        bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
112 113 114 115 116 117 118 119 120 121 122 123

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
K
update  
Kexin Zhao 已提交
124 125 126 127
    mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
Q
Qiao Longfei 已提交
128

Q
QI JUN 已提交
129
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
K
update  
Kexin Zhao 已提交
130 131 132 133
    math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
        functor;
    functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
    functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));
Q
Qiao Longfei 已提交
134

Q
QI JUN 已提交
135
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    // Now, depending on whether we are running test or not, we have two paths.
    if (is_test) {
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
154 155 156 157
          bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165 166 167
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
      double this_factor = 1. - momentum;

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
          handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
          data_desc_, x->template data<T>(), data_desc_,
          y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
K
update  
Kexin Zhao 已提交
168 169 170
          scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(), this_factor,
          mean_out->template mutable_data<BatchNormParamType<T>>(
K
Kexin Zhao 已提交
171
              ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
172 173 174
          variance_out->template mutable_data<BatchNormParamType<T>>(
              ctx.GetPlace()),
          epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
K
Kexin Zhao 已提交
175
                       ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
176
          saved_variance->template mutable_data<BatchNormParamType<T>>(
K
Kexin Zhao 已提交
177
              ctx.GetPlace())));
Q
Qiao Longfei 已提交
178 179 180 181 182 183 184 185 186 187
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

template <typename T>
Q
QI JUN 已提交
188
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
189 190 191 192
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
193
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
194
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
195 196 197
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
198 199 200 201 202 203
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

204 205
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
206
    int N, C, H, W, D;
Q
QI JUN 已提交
207
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

Z
zchen0211 已提交
232 233
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
234
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
235 236 237 238 239 240
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const void *saved_mean_data = saved_mean->template data<T>();
    const void *saved_var_data = saved_var->template data<T>();

Q
QI JUN 已提交
261
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
262
    CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
Q
QI JUN 已提交
263 264 265 266
        dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
        data_desc_, d_y->template data<T>(), data_desc_,
Q
Qiao Longfei 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
        scale->template data<T>(),
        d_scale->template mutable_data<T>(ctx.GetPlace()),
        d_bias->template mutable_data<T>(ctx.GetPlace()), epsilon,
        saved_mean_data, saved_var_data));

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
284
namespace plat = paddle::platform;
Q
QI JUN 已提交
285
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
286 287
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
288
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
289
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>);