pool_mkldnn_op.cc 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22
using framework::DataLayout;
using mkldnn::memory;
23
using mkldnn::pooling_backward;
24 25 26 27 28
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
29 30 31

// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
M
mozga-intel 已提交
32 33 34 35 36 37 38
static std::string gethash(const memory::dims& input_dims,
                           const std::string& pooling_type,
                           const std::vector<int>& ksize,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& suffix) {
  auto dims2str = [](const memory::dims& operand_dims) {
39 40 41 42 43 44 45 46 47 48
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
         dims2str(paddings) + pooling_type + suffix;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static int ComputeCeiledOutput(int input_size, int kernel_size, int padding,
                               int stride) {
  return (input_size - kernel_size + 2 * padding) / stride + 1;
}

static void CorrectOutputSize(const std::vector<int>& src_tz,
                              const std::vector<int>& dst_tz,
                              const std::vector<int>& kernel_size,
                              const std::vector<int>& paddings,
                              const std::vector<int>& strides,
                              std::vector<int>& right_bot_padding) {
  for (int i = 0; i < right_bot_padding.size(); i++) {
    int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                           paddings[i], strides[i]);
    if (desired_size != dst_tz[i + 2]) {
      right_bot_padding[i] += strides[i];
    }
  }
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

83 84 85
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

111 112 113
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

114 115 116 117 118 119 120 121
    const std::string key = gethash(src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Output("Out"));
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
122

123 124 125
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
126 127 128 129 130 131 132
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
133 134
      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), input_format);
135

136 137 138 139 140 141
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
      auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
                                            mkldnn::memory::format::any);
142

143
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
144 145 146
          CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
                              padding_right_bottom, ksize, pooling_type,
                              mkldnn_engine, ceil_mode);
147 148 149 150 151 152 153 154 155 156

      // save pool_pd into global device context to be referred in backward path
      dev_ctx.SetBlob(key_pool_pd, pool_pd);

      std::shared_ptr<mkldnn::memory> workspace_memory =
          CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

      // save pool_workspace_memory to be referred in backward path
      dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

157 158 159 160
      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
161

162 163 164 165 166 167
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

      pool_p = std::make_shared<pooling_forward>(*pool_pd, *(src_memory.get()),
                                                 *(dst_memory.get()),
                                                 *workspace_memory);
168 169

      dev_ctx.SetBlob(key_pool_p, pool_p);
170 171 172

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
173 174 175 176 177 178 179 180 181 182
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
183
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
184
      pool_dst_memory_p->set_data_handle(output_data);
185 186 187 188

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
189
    }
190 191

    // push primitive to stream and wait until it's executed
192
    std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
193 194 195 196
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
197 198 199 200 201
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
202 203 204 205
      const std::vector<int>& stride, const std::vector<int>& padding_left_top,
      const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
      const std::string& pooling_type, const mkldnn::engine& engine,
      bool ceil_mode) const {
206 207 208 209
    auto pool_desc = mkldnn::pooling_forward::desc(
        mkldnn::prop_kind::forward,
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
210 211
        src, dst, stride, kernel, padding_left_top, padding_right_bot,
        mkldnn::padding_kind::zero);
212 213 214 215 216 217 218 219 220 221 222 223

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
224 225 226 227
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

245 246 247 248 249 250 251
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
270
    memory::format in_x_grad_format{memory::format::format_undef};
271 272 273 274 275 276

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

277 278 279 280 281 282 283
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
    const std::string key = gethash(diff_src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Input("Out"));
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
284 285
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
286 287 288
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
304 305 306
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
307 308 309 310 311
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
312 313 314 315 316 317
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
318
      auto workspace_memory = std::static_pointer_cast<memory>(
319 320 321 322
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

323 324 325
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
326 327 328 329 330 331 332 333 334

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

351
      pool_bwd_p = std::make_shared<pooling_backward>(
352 353
          pool_bwd_pd, *(diff_dst_memory.get()), *workspace_memory,
          *(diff_src_memory));
354
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
355

356 357
    } else {
      // Primitives already exist
358
      diff_src_memory = std::static_pointer_cast<memory>(
359
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
360
      PADDLE_ENFORCE(diff_src_memory != nullptr,
361
                     "Fail to find pooling src mem_p in device context");
362
      diff_dst_memory = std::static_pointer_cast<memory>(
363
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
364
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
365
                     "Fail to find pooling dst mem_p in device context");
366 367 368 369 370 371 372 373 374 375 376 377

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
378
    }
379

380 381 382 383
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

384
    // push primitive to stream and wait until it's executed
385 386 387 388 389
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
    pipeline.push_back(*(pool_bwd_p.get()));
390
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
391 392 393

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
394 395 396 397 398 399
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

400 401
namespace ops = paddle::operators;

402
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
403
                   ops::PoolMKLDNNOpKernel<float>);
404
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
405
                   ops::PoolMKLDNNGradOpKernel<float>);