rank_loss_op.cc 4.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rank_loss_op.h"

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    // input check
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("P"), "Input(P) shouldn't be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oi"), "Input(Oi) shouldn't be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oj"), "Input(Oj) shouldn't be null");
    auto p_dims = ctx.Input<framework::Tensor>("P")->dims();
    auto oi_dims = ctx.Input<framework::Tensor>("Oi")->dims();
    auto oj_dims = ctx.Input<framework::Tensor>("Oj")->dims();
    PADDLE_ENFORCE_EQ(oi_dims, oj_dims,
                      "Input(Oi) and Input(Oj) must have the same size");
    PADDLE_ENFORCE_EQ(
        p_dims, oi_dims,
        "Input(P) must have the same size with Input(Oi) & Input(Oj)");
    ctx.Output<framework::Tensor>("Out")->Resize(p_dims);
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RankLossOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yibing Liu 已提交
51 52 53
    AddInput("P", "The desired target values for posteriors.");
    AddInput("Oi", "The model output for item i.");
    AddInput("Oj", "The model output for item j.");
Y
Yibing Liu 已提交
54 55 56 57 58 59 60 61 62 63 64 65
    AddOutput("Out", "The output tensor of RankLoss operator.");
    AddComment(R"DOC(RankLoss operator

A rank loss operator for learning to rank (LTR) task. This operator contains
three inputs: P, Oi, and Oj, and the rank cost can be expressed as

\f[
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\f]

Y
Yibing Liu 已提交
66 67
A detailed explanation about these notations can be found in

Y
Yibing Liu 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
     Rank useing Gradient Descent.
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("P"), "Input(P) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oi"), "Input(Oi) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Oj"), "Input(Oj) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) shouldn't be null.");
    auto dims = ctx.Input<framework::Tensor>("P")->dims();
    ctx.Output<framework::Tensor>(framework::GradVarName("P"))->Resize(dims);
    ctx.Output<framework::Tensor>(framework::GradVarName("Oi"))->Resize(dims);
    ctx.Output<framework::Tensor>(framework::GradVarName("Oj"))->Resize(dims);
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
            ops::RankLossGradOp);
REGISTER_OP_CPU_KERNEL(rank_loss,
                       ops::RankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);