test_optimizer.py 20.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17 18
import unittest

19 20 21
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import append_backward
Q
Qiao Longfei 已提交
22 23 24 25


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
qiaolongfei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
Y
Yancey1989 已提交
55 56 57
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "sgd"])
Q
Qiao Longfei 已提交
58

Q
qiaolongfei 已提交
59 60 61 62
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
63

64 65 66 67 68 69 70 71
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

72
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
73
        init_program = framework.Program()
74 75 76
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
77 78 79 80 81
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
82 83 84 85 86 87 88 89 90 91
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
92 93 94
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
95 96 97 98
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
99
        params_grads = append_backward(mean_out)
100 101
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
102
        opts = momentum_optimizer._create_optimization_pass(
Q
Qiao Longfei 已提交
103
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
104 105 106 107
        self.assertEqual(len(opts), 3)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "momentum"])
108
        self.assertFalse(sgd_op.attr('use_nesterov'))
109 110 111 112 113 114 115 116 117

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
118 119 120 121 122 123 124 125
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

126
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
127
        init_program = framework.Program()
128 129 130
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
131 132 133 134 135
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
136 137 138 139 140 141 142 143 144 145
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
146 147 148 149
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
150
        learning_rate = 0.01
151
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
152
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
F
fengjiayi 已提交
153
        params_grads = append_backward(mean_out)
154 155
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
156
        opts = momentum_optimizer._create_optimization_pass(
Q
Qiao Longfei 已提交
157
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
158 159 160 161
        self.assertEqual(len(opts), 3)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "momentum"])
162
        self.assertTrue(sgd_op.attr('use_nesterov'))
163 164 165 166 167 168 169 170 171

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
172 173 174 175 176 177 178 179
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

180

181 182 183 184 185 186 187 188 189
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
190
        init_program = framework.Program()
191 192 193
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
194 195 196 197 198
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
199 200 201 202 203 204 205 206 207 208
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
209 210 211 212
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
213 214 215
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
F
fengjiayi 已提交
216
        params_grads = append_backward(mean_out)
217 218
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
219 220
        opts = adagrad_optimizer._create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
221 222 223
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "adagrad"])
224

225
        # Check accumulators
226 227 228 229 230 231 232
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
233 234 235 236 237 238 239 240
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

241

242 243 244 245 246 247 248 249 250 251 252 253
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
254
        init_program = framework.Program()
255 256 257
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
258 259 260 261 262
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
263 264 265 266 267 268 269 270 271 272
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
273 274 275 276
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
277
        learning_rate = 0.01
278
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
279
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
280
        params_grads = append_backward(mean_out)
281 282
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
283 284
        opts = adam_optimizer._create_optimization_pass(params_grads, mul_out,
                                                        init_program)
Y
Yancey1989 已提交
285 286 287 288
        self.assertEqual(len(opts), 5)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "adam", "scale", "scale"])
289 290 291

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
292
        self.assertEqual(len(accumulators), 4)
293 294 295 296 297 298 299 300 301
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
302 303 304 305 306 307
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

308

309 310 311 312 313 314 315 316 317 318 319 320
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
321
        init_program = framework.Program()
322 323 324
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
325 326 327 328 329
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
330 331 332 333 334 335 336 337 338 339
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
340 341 342 343
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
344
        learning_rate = 0.01
345
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
346
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
347
        params_grads = append_backward(mean_out)
348 349
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
350 351
        opts = adamax_optimizer._create_optimization_pass(params_grads, mul_out,
                                                          init_program)
Y
Yancey1989 已提交
352 353 354 355
        self.assertEqual(len(opts), 4)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "adamax", "scale"])
356 357 358

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
359
        self.assertEqual(len(accumulators), 3)
360 361 362 363 364 365 366 367 368
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
369 370 371 372 373 374
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

375

376 377 378 379 380 381 382 383 384 385 386 387 388
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
389 390 391 392 393
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
394 395 396 397 398 399 400 401 402 403
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
404 405 406 407
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
408 409 410
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
411
        params_grads = append_backward(mean_out)
412 413
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
414
        opts = decayed_adagrad_optimizer._create_optimization_pass(
415
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
416 417 418 419
        self.assertEqual(len(opts), 3)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "decayed_adagrad"])
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)


Q
qiaolongfei 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
class TestFtrlOptimizer(unittest.TestCase):
    class MockFtrl(optimizer.FtrlOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        learning_rate = 0.01
        ftrl_optimizer = self.MockFtrl(
            learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5)
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
Y
yuyang18 已提交
480 481
        opts = ftrl_optimizer._create_optimization_pass(params_grads, mul_out,
                                                        init_program)
Q
qiaolongfei 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "ftrl"])

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)


Q
Qiao Longfei 已提交
505 506
if __name__ == '__main__':
    unittest.main()