README_en.md 9.2 KB
Newer Older
Y
YixinKristy 已提交
1 2 3 4 5
English | [简体中文](README.md)

# PP-Human— a Real-Time Pedestrian Analysis Tool

PP-Human serves as the first open-source tool of real-time pedestrian anaylsis relying on the PaddlePaddle deep learning framework. Versatile and efficient in deployment, it has been used in various senarios. PP-Human
6
offers many input options, including image/single-camera video/multi-camera video, and covers multi-object tracking, attribute recognition, and action recognition. PP-Human can be applied to intelligent traffic, the intelligent community, industiral patrol, and so on. It supports server-side deployment and TensorRT acceleration,and achieves real-time analysis on the T4 server.
Y
YixinKristy 已提交
7 8 9

## I. Environment Preparation

10
Requirement: PaddleDetection version >= release/2.4 or develop
Y
YixinKristy 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


The installation of PaddlePaddle and PaddleDetection

```
# PaddlePaddle CUDA10.1
python -m pip install paddlepaddle-gpu==2.2.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

# PaddlePaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

# Clone the PaddleDetection repository
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git

# Install other dependencies
cd PaddleDetection
pip install -r requirements.txt
```

For details of the installation, please refer to this [document](docs/tutorials/INSTALL_cn.md)

## II. Quick Start

### 1. Model Download

To make users have access to models of different scenarios, PP-Human provides pre-trained models of object detection, attribute recognition, behavior recognition, and ReID.

| Task            | Scenario | Precision | Inference Speed(FPS) | Model Inference and Deployment |
| :---------:     |:---------:     |:---------------     | :-------:  | :------:      |
41 42 43 44
| Object Detection        | Image/Video Input | mAP: 56.3  | 28.0ms           | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
| Attribute Recognition    | Image/Video Input  Attribute Recognition | MOTA: 72.0 |  33.1ms       | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) |
| Keypoint Detection    | Video Input  Action Recognition | mA: 94.86 | 2ms per person        | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)
| Behavior Recognition   |  Video Input  Bheavior Recognition  | Precision 96.43 |  2.7ms per person          | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |
45
| ReID         | Multi-Target Multi-Camera Tracking   | mAP: 98.8 | 1.5ms per person    | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
Y
YixinKristy 已提交
46 47 48 49 50 51

Then, unzip the downloaded model to the folder `./output_inference`.

**Note: **

- The model precision is decided by the fusion of datasets which include open-source datasets and enterprise ones.
52 53
- The precision on ReID model is evaluated on Market1501.
- The inference speed is tested on T4, using TensorRT FP16. The pipeline of preprocess, prediction and postprocess is included.
Y
YixinKristy 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

### 2. Preparation of Configuration Files

Configuration files of PP-Human are stored in ```deploy/pphuman/config/infer_cfg.yml```. Different tasks are for different functions, so you need to set the task type beforhand.

Their correspondence is as follows:

| Input | Function | Task Type | Config |
|-------|-------|----------|-----|
| Image | Attribute Recognition | Object Detection  Attribute Recognition | DET ATTR |
| Single-Camera Video | Attribute Recognition | Multi-Object Tracking  Attribute Recognition | MOT ATTR |
| Single-Camera Video | Behavior Recognition | Multi-Object Tracking  Keypoint Detection  Action Recognition | MOT KPT ACTION |

For example, for the attribute recognition with the video input, its task types contain multi-object tracking and attribute recognition, and the config is:

```
crop_thresh: 0.5
attr_thresh: 0.5
visual: True

MOT:
  model_dir: output_inference/mot_ppyoloe_l_36e_pipeline/
  tracker_config: deploy/pphuman/config/tracker_config.yml
  batch_size: 1

ATTR:
  model_dir: output_inference/strongbaseline_r50_30e_pa100k/
  batch_size: 8
```

84 85 86 87
**Note: **

- For different tasks, users could add `--enable_attr=True` or `--enable_action=True` in command line and do not need to set config file.
- if only need to change the model path, users could add `--model_dir det=ppyoloe/` in command line and do not need to set config file. For details info please refer to doc below.
Y
YixinKristy 已提交
88 89 90 91 92


### 3. Inference and Deployment

```
93
# Pedestrian detection. Specify the config file path and test images
Y
YixinKristy 已提交
94 95
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --image_file=test_image.jpg --device=gpu

96 97 98 99 100 101 102 103
# Pedestrian tracking. Specify the config file path and test videos
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu

# Pedestrian tracking. Specify the config file path, the model path and test videos
# The model path specified on the command line prioritizes over the config file
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --model_dir det=ppyoloe/

# Attribute recognition. Specify the config file path and test videos
Y
YixinKristy 已提交
104 105
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_attr=True

106
# Action Recognition. Specify the config file path and test videos
Y
YixinKristy 已提交
107 108
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_action=True

109 110 111
# Multi-Camera pedestrian tracking. Specify the config file path and test videos
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_dir=test_video_dir/ --device=gpu

Y
YixinKristy 已提交
112 113
```

114 115
Other usage please refer to [sub-task docs](./docs)

Y
YixinKristy 已提交
116 117 118 119 120
### 3.1 Description of Parameters

| Parameter | Optional or not| Meaning |
|-------|-------|----------|
| --config | Yes | Config file path |
121
| --model_dir | Option | the model paths of different tasks in PP-Human, with a priority higher than config files. For example, `--model_dir det=better_det/ attr=better_attr/` |
Y
YixinKristy 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
| --image_file | Option | Images to-be-predicted  |
| --image_dir  | Option |  The path of folders of to-be-predicted images  |
| --video_file | Option | Videos to-be-predicted |
| --camera_id | Option | ID of the inference camera is -1 by default (means inference without cameras,and it can be set to 0 - (number of cameras-1)), and during the inference, click `q` on the visual interface to exit and output the inference result to output/output.mp4|
| --enable_attr| Option | Enable attribute recognition or not |
| --enable_action| Option | Enable action recognition or not |
| --device | Option | During the operation,available devices are `CPU/GPU/XPU`,and the default is `CPU`|
| --output_dir | Option| The default root directory which stores the visualization result is output/|
| --run_mode | Option | When using GPU,the default one is paddle, and all these are available(paddle/trt_fp32/trt_fp16/trt_int8).|
| --enable_mkldnn | Option |Enable the MKLDNN acceleration or not in the CPU inference, and the default value is false |
| --cpu_threads | Option| The default CPU thread is 1 |
| --trt_calib_mode | Option| Enable calibration on TensorRT or not, and the default is False. When using the int8 of TensorRT,it should be set to True; When using the model quantized by PaddleSlim, it should be set to False. |


## III. Introduction to the Solution

The overall solution of PP-Human is as follows:

<div width="1000" align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160078395-e7b8f2db-1d1c-439a-91f4-2692fac25511.png"/>
</div>


### 1. Object Detection
- Use PP-YOLOE L as the model of object detection
147
- For details, please refer to [PP-YOLOE](../../configs/ppyoloe/) and [Detection and Tracking](docs/mot_en.md)
Y
YixinKristy 已提交
148 149 150 151 152

### 2. Multi-Object Tracking
- Conduct multi-object tracking with the SDE solution
- Use PP-YOLOE L as the detection model
- Use the Bytetrack solution to track modules
153
- For details, refer to [Bytetrack](configs/mot/bytetrack) and [Detection and Tracking](docs/mot_en.md)
Y
YixinKristy 已提交
154

155
### 3. Multi-Camera Tracking
Y
YixinKristy 已提交
156 157 158
- Use PP-YOLOE + Bytetrack to obtain the tracks of single-camera multi-object tracking
- Use ReID(centroid network)to extract features of the detection result of each frame
- Match the features of multi-camera tracks to get the cross-camera tracking result
159
- For details, please refer to [Multi-Camera Tracking](docs/mtmct_en.md)
Y
YixinKristy 已提交
160

161
### 4. Attribute Recognition
Y
YixinKristy 已提交
162 163 164 165 166 167 168 169 170
- Use PP-YOLOE + Bytetrack to track humans
- Use StrongBaseline(a multi-class model)to conduct attribute recognition, and the main attributes include age, gender, hats, eyes, clothing, and backpacks.
- For details, please refer to [Attribute Recognition](docs/attribute_en.md)

### 5. Action Recognition
- Use PP-YOLOE + Bytetrack to track humans
- Use HRNet for keypoint detection and get the information of the 17 key points in the human body
- According to the changes of the key points of the same person within 50 frames, judge whether the action made by the person within 50 frames is a fall with the help of ST-GCN
- For details, please refer to [Action Recognition](docs/action_en.md)