parallel_executor.cc 13.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

P
peizhilin 已提交
23
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33 34 35 36 37 38 39
#ifdef WITH_GPERFTOOLS
#include "google/gperftools.h"
#endif
DEFINE_string(PEProfileFName, "",
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");

Y
Yang Yang 已提交
40
namespace paddle {
Y
Yu Yang 已提交
41
namespace framework {
Y
Yu Yang 已提交
42 43
static std::once_flag gProfileOnce;
static bool gProfileStarted = false;
Y
Yu Yang 已提交
44 45 46
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
      : places_(places) {
    if (!FLAGS_PEProfileFName.empty()) {
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
        ProfilerStart(FLAGS_PEProfileFName.c_str());
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
                        "FLAGS_PEProfileFName will be ignored";
#endif
      });
    }
  }
Y
Yu Yang 已提交
60

61 62 63 64 65 66 67 68 69 70 71
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
Y
Yu Yang 已提交
72 73
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
74
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
75
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
76

P
peizhilin 已提交
77
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
78
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
79
#endif
C
chengduoZH 已提交
80 81
  bool own_local_scope_;
  bool use_cuda_;
82
  bool use_all_reduce_;
Y
Yu Yang 已提交
83 84
};

85 86 87 88
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
89
ParallelExecutor::ParallelExecutor(
90
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
91
    const std::unordered_set<std::string> &params,
92 93
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
94
    Scope *scope, const std::vector<Scope *> &local_scopes,
95
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
96
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
97
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
98
  member_->global_scope_ = scope;
99
  member_->use_cuda_ = exec_strategy.use_cuda_;
100 101 102 103 104 105 106 107
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
108

109
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
110
  // Create local scopes
111
  if (local_scopes.empty()) {
C
chengduoZH 已提交
112
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
113 114
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
115
      member_->local_scopes_.emplace_back(&scope->NewScope());
116 117
    }
  } else {
C
chengduoZH 已提交
118
    member_->own_local_scope_ = false;
119 120
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
121
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
122
    }
Y
Yu Yang 已提交
123 124
  }

C
chengduoZH 已提交
125
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
126
// Bcast Parameters to all GPUs
P
peizhilin 已提交
127
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduoZH 已提交
128 129 130 131 132 133 134 135 136
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
137
#endif
C
chengduoZH 已提交
138 139 140
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
141
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
142
  }
143
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
144

145
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
X
Xin Pan 已提交
146
// ncclOp
P
peizhilin 已提交
147
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
148
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
X
Xin Pan 已提交
149
      main_program, member_->places_, loss_var_name, params,
150
      member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
151 152 153 154 155 156 157 158 159 160 161 162

  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
163 164
      }
    }
S
sneaxiy 已提交
165 166 167 168 169 170 171 172 173 174
    if (!gcs_.empty()) {
      auto ref_cnt_pass =
          ir::PassRegistry::Instance().Get("reference_count_pass");
      ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = ref_cnt_pass->Apply(std::move(graph));
      graph->SetNotOwned("garbage_collector", &gcs_);
    }
  }
C
chengduoZH 已提交
175
#else
176 177 178
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yu Yang 已提交
179
#endif
X
Xin Pan 已提交
180

181 182 183 184 185 186 187 188 189 190 191
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  std::vector<details::VariableInfo> var_infos;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
    }
  }
W
Wu Yi 已提交
192 193
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
C
chengduo 已提交
194 195 196 197 198 199 200 201 202 203 204
    size_t graph_num = ir::GraphNum(*graph);
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
          << ir::GraphNum(*graph)
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
205 206
  }

Y
yuyang18 已提交
207 208 209 210 211 212
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
C
chengduoZH 已提交
213
  }
Y
yuyang18 已提交
214 215 216 217

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
218 219
}

Y
Yancey1989 已提交
220
void ParallelExecutor::BCastParamsToDevices(
221
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
222
  // the initializing bcast, all vars would be bcast from device(0).
223
  for (auto &var : vars) {
X
Xin Pan 已提交
224
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
225
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
226 227 228 229
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
230
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
231
      VLOG(3) << "one in var not inited, return!";
232 233
      continue;
    }
234 235
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
236
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
237
      std::vector<void *> buffers;
238 239 240 241 242
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
243

X
Xin Pan 已提交
244
        if (i == 0) {
245 246
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
247
          auto local_scope = member_->local_scopes_[i];
248
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
249
          t->Resize(dims);
250
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
251
        }
252
        buffers.push_back(buffer);
253
      }
254

255 256 257 258 259 260
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
261 262
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
263
        }
264
        member_->nccl_ctxs_->WaitAll();
265
      }
C
chengduoZH 已提交
266 267 268
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
269 270
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
271
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
272
        if (i == 0) continue;
Y
Yancey1989 已提交
273

274 275
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
276 277 278 279

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
280 281 282 283 284 285
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
286
      }
Y
Stash  
Yu Yang 已提交
287 288
    }
  }
Y
Yu Yang 已提交
289
}
Y
Yu Yang 已提交
290

Y
Yu Yang 已提交
291 292
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
293 294 295 296 297 298
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif

X
Xin Pan 已提交
299
  platform::RecordBlock b(0);
S
sneaxiy 已提交
300 301 302
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
303 304 305 306 307 308 309
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
310 311
  }
#endif
S
sneaxiy 已提交
312 313 314
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
315
}
Y
Yu Yang 已提交
316

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
336 337 338 339 340
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
341 342
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
343
      auto t =
Y
Yu Yang 已提交
344
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
345 346
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
347 348 349 350
    }
  }
}

351
ParallelExecutor::~ParallelExecutor() {
352 353
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
354
  }
S
sneaxiy 已提交
355 356
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
357
  member_.reset();
358 359
}

Y
Yu Yang 已提交
360
}  // namespace framework
Y
Yang Yang 已提交
361
}  // namespace paddle
S
sneaxiy 已提交
362 363 364
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif