yolov3_loss_op.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ObjectnessMask"),
        "Output(ObjectnessMask) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
                   "Output(GTMatchMask) of Yolov3LossOp should not be null.");
37 38

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
39 40
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
41
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
42
    int anchor_num = anchors.size() / 2;
43 44
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
45
    auto class_num = ctx->Attrs().Get<int>("class_num");
46

D
dengkaipeng 已提交
47 48 49
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
50 51 52 53
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
D
dengkaipeng 已提交
54 55 56 57
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
D
dengkaipeng 已提交
58
                      "Input(GTLabel) should be a 2-D tensor");
D
dengkaipeng 已提交
59 60 61 62
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
63 64 65 66
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
67 68 69 70 71
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
          "Attr(anchor_mask) should not crossover Attr(anchors).");
    }
72 73 74
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

75 76 77 78 79 80 81 82 83 84 85 86
    if (ctx->HasInput("GTScore")) {
      auto dim_gtscore = ctx->GetInputDim("GTScore");
      PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
                        "Input(GTScore) should be a 2-D tensor");
      PADDLE_ENFORCE_EQ(
          dim_gtscore[0], dim_gtbox[0],
          "Input(GTBox) and Input(GTScore) dim[0] should be same");
      PADDLE_ENFORCE_EQ(
          dim_gtscore[1], dim_gtbox[1],
          "Input(GTBox) and Input(GTScore) dim[1] should be same");
    }

87
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
88
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
89 90 91 92 93 94

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
    ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
    ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
95 96 97 98 99
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
100 101
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
102 103 104 105 106 107 108
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
109
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
110 111 112
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
113
             "keys of each anchor box");
114 115 116 117
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
118 119 120 121 122 123 124
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
125
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
126
             "box class id.");
127 128 129 130 131
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
             "augmentation.");
D
dengkaipeng 已提交
132 133
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
134
              "This is a 1-D tensor with shape of [N]");
135 136 137 138 139 140
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
141
              "This is an intermediate tensor with shape of [N, B], "
142 143 144
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
145 146

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
147 148
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
149 150 151 152 153 154
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
155
    AddAttr<int>("downsample_ratio",
156 157 158 159
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
160
    AddAttr<float>("ignore_thresh",
161 162
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
163 164
    AddAttr<bool>("use_label_smooth", "bool,default True", "use label smooth")
        .SetDefault(true);
165
    AddComment(R"DOC(
166
         This operator generates yolov3 loss based on given predict result and ground
167
         truth boxes.
168 169
         
         The output of previous network is in shape [N, C, H, W], while H and W
170 171 172 173 174 175 176
         should be the same, H and W specify the grid size, each grid point predict 
         given number boxes, this given number, which following will be represented as S,
         is specified by the number of anchors, In the second dimension(the channel
         dimension), C should be equal to S * (class_num + 5), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so in the 
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor box.
177

D
dengkaipeng 已提交
178 179
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
180 181

         $$
182 183 184 185 186 187
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
188
         b_w = p_w e^{t_w}
189 190
         $$
         $$
191 192 193
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
194
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
195
         and :math:`p_w, p_h` is specified by anchors.
196 197 198

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
D
dengkaipeng 已提交
199
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore 
200 201 202
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
D
dengkaipeng 已提交
203
         confidence score loss, and classification loss. The L2 loss is used for 
204 205 206
         box coordinates (w, h), and sigmoid cross entropy loss is used for box 
         coordinates (x, y), confidence score loss and classification loss.

207 208 209 210 211
         Each groud truth box find a best matching anchor box in all anchors, 
         prediction of this anchor box will incur all three parts of losses, and
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

212 213
         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
214
         calculated as follows.
215 216 217 218

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
219

D
dengkaipeng 已提交
220
         Final loss will be represented as follows.
D
dengkaipeng 已提交
221 222

         $$
223 224
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
225
         $$
226 227 228 229 230 231 232 233 234
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
235 236
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
237 238 239 240 241 242
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

243
 protected:
244 245
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
246 247
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
248 249 250
  }
};

251 252 253 254 255 256 257 258 259 260
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
261
    op->SetInput("GTLabel", Input("GTLabel"));
262
    op->SetInput("GTScore", Input("GTScore"));
263
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
264 265
    op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", Output("GTMatchMask"));
266 267 268 269 270

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
271
    op->SetOutput(framework::GradVarName("GTLabel"), {});
272
    op->SetOutput(framework::GradVarName("GTScore"), {});
273 274 275 276
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

277 278 279 280 281
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
282
                  ops::Yolov3LossGradMaker);
283
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
284 285 286 287
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);