preprocess.py 8.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#!/bin/env python
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Example:
    python preprocess.py -i INPUT [-d DICTSIZE] [-m]

Options:
    -h, --help     show this help message and exit
    -i INPUT       input original dataset path
    -d DICTSIZE    specified word count of dictionary
    -m --mergeDict merge source and target dictionary
"""
import os
import sys 

import string
from optparse import OptionParser
from paddle.utils.preprocess_util import save_list, DatasetCreater

class SeqToSeqDatasetCreater(DatasetCreater):
    """
    A class to process data for sequence to sequence application.
    """

    def __init__(self, data_path, output_path):
        """
        data_path: the path to store the train data, test data and gen data
        output_path: the path to store the processed dataset
        """
        DatasetCreater.__init__(self, data_path)
        self.gen_dir_name = 'gen'
        self.gen_list_name = 'gen.list'
        self.output_path = output_path

    def concat_file(self, file_path, file1, file2, output_path, output):
        """
        Concat file1 and file2 to be one output file 
        The i-th line of output = i-th line of file1 + '\t' + i-th line of file2
        file_path: the path to store file1 and file2
        output_path: the path to store output file
        """
        file1 = os.path.join(file_path, file1)
        file2 = os.path.join(file_path, file2)
        output = os.path.join(output_path, output)
        if not os.path.exists(output):
            os.system('paste ' + file1 + ' ' + file2 + ' > ' + output)

    def cat_file(self, dir_path, suffix, output_path, output):
        """
        Cat all the files in dir_path with suffix to be one output file 
        dir_path: the base directory to store input file
        suffix: suffix of file name
        output_path: the path to store output file
        """
        cmd = 'cat '
        file_list = os.listdir(dir_path)
        file_list.sort()
        for file in file_list:
            if file.endswith(suffix):
                cmd += os.path.join(dir_path, file) + ' '
        output = os.path.join(output_path, output)
        if not os.path.exists(output):
            os.system(cmd + '> ' + output)

    def build_dict(self, file_path, dict_path, dict_size = -1):
        """ 
        Create the dictionary for the file, Note that
        1. Valid characters include all printable characters
        2. There is distinction between uppercase and lowercase letters
        3. There is 3 special token: 
           <s>: the start of a sequence
           <e>: the end of a sequence
           <unk>: a word not included in dictionary
        file_path: the path to store file 
        dict_path: the path to store dictionary
        dict_size: word count of dictionary
                   if is -1, dictionary will contains all the words in file 
        """
        if not os.path.exists(dict_path):
            dictory = dict()
            with open(file_path, "r") as fdata:
                for line in fdata:
                    line = line.split('\t')
                    for line_split in line:
                        words = line_split.strip().split()
                        for word in words:
                            if word not in dictory:
                                dictory[word] = 1
                            else: 
                                dictory[word] += 1
            output = open(dict_path, "w+")
            output.write('<s>\n<e>\n<unk>\n')
            count = 3
            for key, value in sorted(dictory.items(), key = lambda d:d[1], reverse = True):
                output.write(key + "\n")
                count += 1
                if count == dict_size:
                    break
            self.dict_size = count
      
    def create_dataset(self, dict_size = -1, mergeDict = False,
                       suffixes = ['.src', '.trg']):
        """
        Create seqToseq dataset 
        """
        # dataset_list and dir_list has one-to-one relationship
        train_dataset = os.path.join(self.data_path, self.train_dir_name)
        test_dataset = os.path.join(self.data_path, self.test_dir_name)
        gen_dataset = os.path.join(self.data_path, self.gen_dir_name)
        dataset_list = [train_dataset, test_dataset, gen_dataset]

        train_dir = os.path.join(self.output_path, self.train_dir_name)
        test_dir = os.path.join(self.output_path, self.test_dir_name)
        gen_dir = os.path.join(self.output_path, self.gen_dir_name)
        dir_list = [train_dir, test_dir, gen_dir]

        # create directory
        for dir in dir_list:
            if not os.path.exists(dir):
                os.mkdir(dir)

        # checkout dataset should be parallel corpora
        suffix_len = len(suffixes[0])
        for dataset in dataset_list:
          file_list = os.listdir(dataset)
          if len(file_list) % 2 == 1:
              raise RuntimeError("dataset should be parallel corpora")
          file_list.sort()
          for i in range(0, len(file_list), 2):
              if file_list[i][:-suffix_len] != file_list[i + 1][:-suffix_len]:
                  raise RuntimeError("source and target file name should be equal")

        # cat all the files with the same suffix in dataset
        for suffix in suffixes:
            for dataset in dataset_list:
                outname = os.path.basename(dataset) + suffix
                self.cat_file(dataset, suffix, dataset, outname)

        # concat parallel corpora and create file.list
        print 'concat parallel corpora for dataset'
        id = 0
        list = ['train.list', 'test.list', 'gen.list']
        for dataset in dataset_list:
            outname = os.path.basename(dataset)
            self.concat_file(dataset, outname + suffixes[0], 
                             outname + suffixes[1], dir_list[id], outname)
            save_list([os.path.join(dir_list[id], outname)], 
                      os.path.join(self.output_path, list[id]))
            id += 1

        # build dictionary for train data
        dict = ['src.dict', 'trg.dict']
        dict_path = [os.path.join(self.output_path, dict[0]), 
                     os.path.join(self.output_path, dict[1])]
        if mergeDict:
            outname = os.path.join(train_dir, train_dataset.split('/')[-1])
            print 'build src dictionary for train data'
            self.build_dict(outname, dict_path[0], dict_size)
            print 'build trg dictionary for train data'
            os.system('cp ' + dict_path[0] + ' ' + dict_path[1])
        else:
            outname = os.path.join(train_dataset, self.train_dir_name)
            for id in range(0,2):
                suffix = suffixes[id]
                print 'build ' + suffix[1:] + ' dictionary for train data'
                self.build_dict(outname + suffix, dict_path[id], dict_size)
        print 'dictionary size is', self.dict_size

def main():
    usage = "usage: \n" \
            "python %prog -i INPUT [-d DICTSIZE] [-m]"
    parser = OptionParser(usage)
    parser.add_option("-i", action="store", dest="input",
                      help="input original dataset path")
    parser.add_option("-d", action="store", dest="dictsize",
                      help="specified word count of dictionary")
    parser.add_option("-m", "--mergeDict", action="store_true", dest="mergeDict",
                      help="merge source and target dictionary")
    (options, args) = parser.parse_args()
    if options.input[-1] == os.path.sep:
        options.input = options.input[:-1]
    outname = os.path.basename(options.input)
    output_path = os.path.join(os.path.dirname(options.input), 'pre-' + outname)
    dictsize = int(options.dictsize) if options.dictsize else -1
    if not os.path.exists(output_path):
        os.mkdir(output_path)
        data_creator = SeqToSeqDatasetCreater(options.input, output_path)
        data_creator.create_dataset(dictsize, options.mergeDict)

if __name__ == "__main__":
    main();