nn.py 348.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60 61 62 63 64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
67
    'sequence_unpad',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
76
    'sequence_slice',
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
94
    'group_norm',
X
Xin Pan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
108
    'roi_align',
X
Xin Pan 已提交
109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
113
    'resize_nearest',
X
Xin Pan 已提交
114 115 116 117 118 119
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
120
    'selu',
X
Xin Pan 已提交
121 122 123
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
124
    'margin_rank_loss',
X
Xin Pan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
168
    'space_to_depth',
W
whs 已提交
169
    'affine_grid',
S
sneaxiy 已提交
170
    'sequence_reverse',
171
    'affine_channel',
B
barrierye 已提交
172
    'similarity_focus',
M
minqiyang 已提交
173
    'hash',
D
dengkaipeng 已提交
174
    'grid_sampler',
G
gmcather 已提交
175 176
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
177
    'bilinear_tensor_product',
C
chengduo 已提交
178 179
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
180
    'lstm',
S
sneaxiy 已提交
181
    'py_func',
182
    'psroi_pool',
M
minqiyang 已提交
183
    'huber_loss',
Y
Yu Yang 已提交
184 185
]

J
jerrywgz 已提交
186 187
kIgnoreIndex = -100

Y
Yu Yang 已提交
188 189 190 191 192 193 194

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
195
       is_test=False,
196
       name=None):
Y
Yu Yang 已提交
197
    """
198
    **Fully Connected Layer**
Y
Yu Yang 已提交
199

200 201 202 203 204 205 206 207
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
208
    to the output as well.
C
caoying03 已提交
209

C
caoying03 已提交
210
    This process can be formulated as follows:
211 212 213

    .. math::

214
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
215 216 217

    In the above equation:

C
caoying03 已提交
218 219 220 221
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
222
    * :math:`Act`: The activation function.
C
caoying03 已提交
223
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
224 225

    Args:
R
ranqiu 已提交
226 227 228 229 230 231 232 233 234 235
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
236
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
237 238 239 240
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
241 242
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
243
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
244
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
245
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
246

247
    Returns:
F
fengjiayi 已提交
248
        Variable: The transformation result.
249 250

    Raises:
C
caoying03 已提交
251
        ValueError: If rank of the input tensor is less than 2.
252 253 254 255

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
256
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
257
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
258
    """
C
caoying03 已提交
259

C
caoying03 已提交
260
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
261 262 263 264

    dtype = helper.input_dtype()

    mul_results = []
265 266
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
267 268 269
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
270

Y
Yu Yang 已提交
271
        w = helper.create_parameter(
272
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
273
        tmp = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
278
            outputs={"Out": tmp},
M
mozga-intel 已提交
279 280
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
281 282 283 284
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
285
    else:
X
Xin Pan 已提交
286
        pre_bias = helper.create_variable_for_type_inference(dtype)
287
        helper.append_op(
288 289 290
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
291
            attrs={"use_mkldnn": False})
292 293 294 295
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
296 297


298 299 300
def embedding(input,
              size,
              is_sparse=False,
301
              is_distributed=False,
302 303 304
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
305
    """
306 307
    **Embedding Layer**

308
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
309 310
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
311 312 313

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
314 315

    Args:
316 317 318 319 320
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
321
        is_distributed(bool): Whether to run lookup table from remote parameter server.
322 323
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
324
            with zeros whenever lookup encounters it in :attr:`input`. If
325
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
326 327
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
328
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
329

330 331 332
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
333

334 335
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
336

C
chengduoZH 已提交
337
          dict_size = len(dataset.ids)
338
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
339
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
340 341 342
    """

    helper = LayerHelper('embedding', **locals())
343 344 345
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
346 347
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
348 349
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
350
    tmp = helper.create_variable_for_type_inference(dtype)
351 352
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
353 354 355 356 357
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
358 359 360
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
361
            'remote_prefetch': remote_prefetch,
362 363
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
364 365 366
    return tmp


W
wopeizl 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
383

W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
487 488


P
phlrain 已提交
489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
495
         dropout_prob=0.0,
P
phlrain 已提交
496 497 498 499 500
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
501
    """
P
phlrain 已提交
502
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
503 504

    A four-gate Long Short-Term Memory network with no peephole connections.
H
haowang101779990 已提交
505
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
L
liuhongyu 已提交
506 507
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    .. math::
    
       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) 
       
       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) 
       
       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) 
       
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
       
       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} 
       
       h_t &= o_t \odot tanh(c_t) 

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
523 524 525 526 527 528
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
529 530 531
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
532
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
533

H
haowang101779990 已提交
534
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication, 
L
liuhongyu 已提交
535 536 537 538 539
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
H
haowang101779990 已提交
540
        init_h(Variable): The initial hidden state of the LSTM                       
L
liuhongyu 已提交
541 542 543 544 545
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
546
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
L
liuhongyu 已提交
547 548
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
549 550
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
551 552 553 554 555 556
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
557
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
558

L
liuhongyu 已提交
559 560

    Returns:
H
haowang101779990 已提交
561 562 563 564 565 566 567 568 569 570 571 572
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):  
                        
                        Three tensors, rnn_out, last_h, last_c:
                        
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
L
liuhongyu 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
588
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
589 590 591 592 593 594
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
595 596 597
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
657 658 659 660 661 662 663 664 665 666 667
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
668 669
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
670 671 672
    """
    **Dynamic LSTMP Layer**

673 674 675 676 677 678
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
679 680 681 682 683

    The formula is as follows:

    .. math::

684
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
685

686
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
687

688
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
689

690
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
691

692
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
693

694
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
695

696
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
697

Y
Yibing Liu 已提交
698 699 700 701 702 703
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
704
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
705
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
706
          bias vector).
Y
Yibing Liu 已提交
707 708 709
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
710
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
711
    * :math:`h`: The hidden state.
712
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
713 714
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
715
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
716
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
717
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
718 719
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
720 721 722 723

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
724

Y
Yibing Liu 已提交
725 726 727 728 729 730 731 732 733 734 735 736
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
737
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
738 739
                               hidden-hidden weight and projection weight.

740 741
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
742 743
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
744 745
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
746
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
747 748 749 750 751

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
752
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
753 754 755 756 757 758
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
759
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
760 761 762
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
763
                                - The shape is (1 x 7D).
C
chengduo 已提交
764 765 766 767 768

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
769 770 771 772 773 774 775 776 777
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
778
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
779 780
                              default "tanh".
        proj_activation(str): The activation for projection output.
781
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
782 783
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
784 785
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
786 787

    Returns:
788 789 790 791
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
792 793

    Examples:
794

Y
Yibing Liu 已提交
795 796
        .. code-block:: python

797 798 799 800
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
801
            hidden_dim, proj_dim = 512, 256
802
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
803
                                     act=None, bias_attr=None)
804 805 806
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
807 808 809 810
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
811
    """
812

C
chengduo 已提交
813
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
814
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
815
    size = size // 4
Y
Yibing Liu 已提交
816 817 818 819 820 821 822 823 824 825
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
826 827 828 829 830 831
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
860 861 862 863 864 865 866 867 868
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
869
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
870

871
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
872
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
873

G
guosheng 已提交
874 875 876 877 878 879 880 881 882
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
883

G
guosheng 已提交
884
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
885

G
guosheng 已提交
886
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
887 888
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
889 890 891 892
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
893
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
894 895

    Args:
896 897
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
898
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
899
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
900 901
            is the hidden size.
        size(int): The dimension of the gru cell.
902
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
903 904
            hidden-hidden weight matrix. Note:

905
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
906
              :math:`D` is the hidden size.
907
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
908
              The first part are weights of the update gate and reset gate with
909
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
910
              candidate hidden state with shape :math:`(D \\times D)`.
911 912 913 914 915

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
916
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
917
            the bias in the update gate, reset gate and candidate calculations.
918 919 920
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
921 922
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
923
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
924 925 926
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
927
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
928
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
929 930 931 932
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
933 934

    Returns:
G
guosheng 已提交
935
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
936
            and sequence length is the same with the input.
937

G
guosheng 已提交
938
    Examples:
939

G
guosheng 已提交
940 941
        .. code-block:: python

942 943 944 945
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
946
            hidden_dim = 512
947
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
948
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
949 950 951 952 953 954 955 956 957
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
958
    batch_size = input.shape[0]
G
guosheng 已提交
959
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
960
    if h_0:
G
guosheng 已提交
961
        assert h_0.shape == (
Y
Yancey 已提交
962 963 964
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
965

X
Xin Pan 已提交
966 967 968 969
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
988 989 990
def gru_unit(input,
             hidden,
             size,
991 992
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
993
             activation='tanh',
994
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
995
    """
996
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
997

998 999
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1000

1001
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1002

1003
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1004

1005
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
1006 1007

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1008 1009 1010
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1011 1012
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1013 1014
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1015 1016 1017
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1018 1019 1020

    Args:
        input (Variable): The fc transformed input value of current step.
1021
        hidden (Variable): The hidden value of gru unit from previous step.
1022
        size (integer): The input dimension value.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1037
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1038
            the bias in the update gate, reset gate and candidate calculations.
1039 1040 1041
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1042 1043
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1044 1045 1046 1047
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1048

1049 1050 1051 1052 1053 1054
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1055

1056
             # assuming we have x_t_data and prev_hidden of size=10
1057
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1058 1059
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1072
    size = size // 3
Y
Yu Yang 已提交
1073 1074

    # create weight
1075 1076
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1077

X
Xin Pan 已提交
1078 1079 1080
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1081
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1082
    # create bias
1083
    if helper.bias_attr:
Y
Yu Yang 已提交
1084 1085 1086
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1087
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1088 1089 1090

    helper.append_op(
        type='gru_unit',
1091
        inputs=inputs,
Y
Yu Yang 已提交
1092 1093 1094 1095 1096 1097
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1098 1099
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1100 1101 1102 1103 1104
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1105
@templatedoc()
1106
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1107 1108 1109 1110 1111 1112 1113
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1114
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1115 1116 1117 1118
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1119 1120 1121
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1122 1123

    """
Y
Yu Yang 已提交
1124 1125 1126 1127 1128 1129
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1130 1131 1132 1133 1134 1135 1136 1137
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1153 1154 1155 1156
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1157

W
wopeizl 已提交
1158 1159
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1160

W
wopeizl 已提交
1161
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1162

W
wopeizl 已提交
1163
        label(${label_type}): ${label_comment}
1164

W
wopeizl 已提交
1165 1166
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1167

W
wopeizl 已提交
1168 1169
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1170

W
wopeizl 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1181
                "Transition": transition,
W
wopeizl 已提交
1182 1183
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1184

W
wopeizl 已提交
1185
    return viterbi_path
Y
Yu Yang 已提交
1186 1187


Y
yi.wu 已提交
1188
@templatedoc()
F
fengjiayi 已提交
1189
def cos_sim(X, Y):
Y
Yu Yang 已提交
1190
    """
Y
yi.wu 已提交
1191 1192 1193
    ${comment}

    Args:
1194 1195
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1196

Y
yi.wu 已提交
1197
    Returns:
1198
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1199
    """
F
fengjiayi 已提交
1200
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1201 1202 1203
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1214 1215 1216 1217 1218
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1219
            dropout_implementation="downgrade_in_infer"):
1220 1221 1222 1223 1224
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1225
    training. The dropout operator randomly sets (according to the given dropout
1226 1227 1228
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1229 1230
    dropout op can be removed from the program to make the program more efficient.

1231
    Args:
1232 1233
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1234 1235 1236 1237 1238 1239 1240
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1241 1242
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1243
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1244 1245 1246 1247 1248 1249

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1250
                                        2. upscale_in_train, upscale the outcome at training time
1251

H
haowang101779990 已提交
1252 1253
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1254

H
haowang101779990 已提交
1255 1256
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1257

H
haowang101779990 已提交
1258
                                        
1259
    Returns:
1260
        Variable: A tensor variable is the shape with `x`.
1261 1262

    Examples:
1263

1264 1265
        .. code-block:: python

1266 1267
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1268 1269
    """

F
fengjiayi 已提交
1270
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1271 1272 1273
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1274 1275 1276 1277

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1278 1279 1280 1281 1282
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1283 1284 1285 1286
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1287 1288
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1289
        })
1290 1291 1292
    return out


J
jerrywgz 已提交
1293
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1294
    """
Y
Yibing Liu 已提交
1295 1296
    **Cross Entropy Layer**

1297 1298 1299
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1300 1301

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1302
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1303

Y
Yibing Liu 已提交
1304
        .. math::
Y
yangyaming 已提交
1305

Y
Yibing Liu 已提交
1306 1307 1308
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1309 1310
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1311 1312 1313 1314 1315

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1316
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1317 1318 1319
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1320 1321
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1322
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1323

Y
Yibing Liu 已提交
1324
    Args:
Y
yangyaming 已提交
1325
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1326 1327 1328 1329
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1330
        label (Variable|list): the ground truth which is a 2-D tensor. When
1331 1332 1333 1334
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1335
        soft_label (bool): a flag indicating whether to
1336
                                           interpretate the given labels as soft
1337
                                           labels. Default: `False`.
M
minqiyang 已提交
1338 1339
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1340
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1341 1342 1343 1344 1345

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
                      
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
                         
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1355 1356 1357 1358 1359 1360

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1361
    """
F
fengjiayi 已提交
1362
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1363
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1364 1365 1366 1367 1368
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1369 1370
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1371 1372 1373
    return out


F
frankwhzhang 已提交
1374
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1375 1376 1377
    """
    Bayesian Personalized Ranking Loss Operator.

1378
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1379 1380 1381 1382 1383 1384
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1385 1386 1387 1388 1389 1390
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1391 1392
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1393 1394 1395
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1396 1397 1398
    Examples:
        .. code-block:: python

1399
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1400
    """
1401 1402 1403 1404 1405 1406

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1407
                'Label': [label]},
1408 1409 1410 1411
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1412
def square_error_cost(input, label):
Y
Yu Yang 已提交
1413
    """
1414 1415
    **Square error cost layer**

1416 1417
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1432 1433
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1434 1435

    Returns:
G
guosheng 已提交
1436
        Variable: The tensor variable storing the element-wise squared error \
1437
                  difference of input and label.
1438 1439 1440 1441 1442 1443 1444 1445

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1446
    """
F
fengjiayi 已提交
1447
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1448
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1449 1450 1451 1452 1453 1454
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1455
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1456
    helper.append_op(
F
fengjiayi 已提交
1457 1458
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1459 1460 1461
    return square_out


Y
yi.wu 已提交
1462
@templatedoc()
Y
Yu Yang 已提交
1463 1464 1465 1466
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1467
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1468
    """
Y
yi.wu 已提交
1469
    **Chunk Evaluator**
Y
yi.wu 已提交
1470

Y
yangyaming 已提交
1471
    This function computes and outputs the precision, recall and
1472
    F1-score of chunk detection.
Y
yi.wu 已提交
1473

H
haowang101779990 已提交
1474 1475
    For some basics of chunking, please refer to 
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1476 1477 1478 1479 1480 1481

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1482

Y
yi.wu 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1508

Y
yi.wu 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1533
    Args:
1534 1535 1536 1537 1538
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1539

Y
yi.wu 已提交
1540
    Returns:
Y
update  
yi.wu 已提交
1541 1542 1543
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1544

Y
yi.wu 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1557
    """
F
fengjiayi 已提交
1558
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1559 1560

    # prepare output
X
Xin Pan 已提交
1561 1562 1563 1564 1565 1566 1567
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1568 1569 1570 1571 1572 1573 1574 1575

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1576 1577 1578 1579
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1580 1581 1582
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1583 1584
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1585
        })
1586 1587
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1588 1589


1590
@templatedoc()
Y
Yu Yang 已提交
1591 1592 1593 1594 1595 1596 1597
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1598 1599
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1600 1601 1602 1603
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1604 1605 1606 1607 1608 1609 1610

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1624

1625 1626
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1627 1628 1629 1630 1631 1632 1633
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1634
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1645
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1646 1647 1648 1649 1650 1651
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1652
def sequence_softmax(input, use_cudnn=False, name=None):
1653 1654 1655
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1656
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1673 1674 1675
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1688 1689
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1690
    softmax_out = helper.create_variable_for_type_inference(dtype)
1691 1692 1693 1694 1695 1696 1697 1698
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1699
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1700
    """
1701
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1702
    has the same shape as the input.
Q
qiaolongfei 已提交
1703

1704 1705 1706 1707 1708 1709
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1710
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1711 1712 1713 1714 1715 1716 1717

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1718
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1719 1720 1721 1722 1723 1724 1725 1726

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1727 1728 1729
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1742 1743
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1744
    softmax_out = helper.create_variable_for_type_inference(dtype)
1745 1746 1747 1748 1749 1750 1751 1752
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1753 1754 1755
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1756 1757
           stride=1,
           padding=0,
1758
           dilation=1,
Y
Yu Yang 已提交
1759 1760 1761
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1762
           use_cudnn=True,
1763 1764
           act=None,
           name=None):
Y
Yu Yang 已提交
1765
    """
C
chengduoZH 已提交
1766
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1767 1768
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1769
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1770 1771 1772 1773 1774 1775 1776
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1777 1778 1779
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1780

1781
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1782

C
chengduoZH 已提交
1783 1784
    .. math::

C
refine  
chengduoZH 已提交
1785
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1786

T
tensor-tang 已提交
1787
    Where:
C
chengduoZH 已提交
1788

1789 1790 1791 1792 1793
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1794
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1795 1796 1797

    Example:

1798 1799
        - Input:

W
weixing02 已提交
1800
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1801

W
weixing02 已提交
1802
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1803

1804
        - Output:
T
tensor-tang 已提交
1805

W
weixing02 已提交
1806
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1807

C
chengduoZH 已提交
1808
        Where
1809 1810

        .. math::
C
chengduoZH 已提交
1811

W
weixing02 已提交
1812 1813
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1814 1815

    Args:
1816
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1817
        num_filters(int): The number of filter. It is as same as the output
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1835 1836 1837 1838 1839
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1840
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1841 1842 1843 1844 1845
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1846 1847
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1848 1849
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1850
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1851
            will be named automatically. Default: None
C
chengduoZH 已提交
1852 1853

    Returns:
G
guosheng 已提交
1854
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1855 1856
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1857
    Raises:
1858 1859
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1860

C
chengduoZH 已提交
1861 1862 1863
    Examples:
        .. code-block:: python

1864 1865
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1866 1867 1868
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1869
    assert param_attr is not False, "param_attr should not be False here."
1870
    l_type = 'conv2d'
X
xzl 已提交
1871 1872
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1873
        l_type = 'depthwise_conv2d'
1874 1875 1876 1877

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1878 1879 1880 1881 1882
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1883
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1884

C
chengduoZH 已提交
1885 1886 1887
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1888
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1889

C
chengduoZH 已提交
1890 1891
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1892 1893

    input_shape = input.shape
M
minqiyang 已提交
1894
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1895 1896

    def _get_default_param_initializer():
C
chengduo 已提交
1897 1898
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1899 1900 1901 1902 1903 1904 1905 1906
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1907
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1923
    helper.append_op(
1924
        type=l_type,
Y
Yu Yang 已提交
1925 1926 1927 1928 1929
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1930 1931 1932
        attrs={
            'strides': stride,
            'paddings': padding,
1933
            'dilations': dilation,
C
chengduoZH 已提交
1934
            'groups': groups,
1935
            'use_cudnn': use_cudnn,
1936
            'use_mkldnn': False,
C
chengduoZH 已提交
1937
        })
Y
Yu Yang 已提交
1938 1939 1940 1941 1942 1943

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1961 1962 1963 1964 1965 1966
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1976 1977
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1978 1979 1980
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1981
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2007
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2008 2009
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2010
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2011 2012
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2013
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2014 2015
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2016
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2017 2018 2019 2020 2021 2022
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2033 2034
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2035 2036
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2037
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2038
            will be named automatically. Default: None.
C
chengduoZH 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2051 2052
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2053 2054 2055
    """

    l_type = 'conv3d'
C
chengduo 已提交
2056
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2067
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2081 2082 2083
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2084 2085 2086 2087 2088 2089 2090 2091
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2092
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2107
            'use_mkldnn': False
C
chengduoZH 已提交
2108 2109
        })

2110
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2111 2112 2113 2114

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2115
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2116
    """
Y
yangyaming 已提交
2117 2118 2119
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2131
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2132 2133 2134 2135 2136
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2137
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2138 2139 2140 2141 2142 2143 2144

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2145 2146
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2147

L
Luo Tao 已提交
2148 2149
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2150
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2151
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2152
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2153 2154 2155 2156 2157 2158 2159

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2160

Y
yangyaming 已提交
2161
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2162 2163 2164 2165 2166
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2167 2168
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2169
    """
F
fengjiayi 已提交
2170
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2171
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2172 2173
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2174 2175 2176 2177 2178 2179

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2180 2181
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2182

Y
yangyaming 已提交
2183 2184 2185 2186 2187
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2188 2189 2190
    return pool_out


C
add doc  
chengduoZH 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2210
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2211 2212 2213 2214 2215
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2216
def sequence_first_step(input):
L
Luo Tao 已提交
2217
    """
L
Luo Tao 已提交
2218
    This function gets the first step of sequence.
L
Luo Tao 已提交
2219 2220 2221 2222

    .. code-block:: text

       x is a 1-level LoDTensor:
2223
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2224 2225 2226 2227 2228
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2229
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2230
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2231

L
Luo Tao 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2241

Y
yangyaming 已提交
2242
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2243 2244 2245
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2246 2247 2248
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2249
def sequence_last_step(input):
L
Luo Tao 已提交
2250
    """
L
Luo Tao 已提交
2251
    This function gets the last step of sequence.
L
Luo Tao 已提交
2252 2253 2254 2255

    .. code-block:: text

       x is a 1-level LoDTensor:
2256
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2257 2258 2259 2260 2261
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2262
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2263
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2264

L
Luo Tao 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2274

Y
yangyaming 已提交
2275
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2276 2277 2278
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2279 2280 2281
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2282 2283 2284 2285
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2286
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2287 2288 2289 2290 2291
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2292

H
haowang101779990 已提交
2293
              - Case:
Y
Yibing Liu 已提交
2294

2295
            Given the input Variable **input**:
2296

2297 2298 2299
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2300

2301
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2302

2303
            the output Variable will be
2304

2305 2306 2307
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2308

H
haowang101779990 已提交
2309 2310
    Note: 
          The first dimension size of **input**, **offset** and **length**
2311
          should be equal. The **offset** should start from 0.
2312

Y
Yibing Liu 已提交
2313
    Args:
2314
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2315
                         sequences.
Y
Yibing Liu 已提交
2316 2317 2318 2319 2320 2321
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2322
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2333
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2334 2335 2336 2337
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2338
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2353
@templatedoc()
Y
Yu Yang 已提交
2354
def pool2d(input,
C
chengduoZH 已提交
2355 2356
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2357 2358
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2359
           global_pooling=False,
C
chengduoZH 已提交
2360
           use_cudnn=True,
2361
           ceil_mode=False,
2362 2363
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2364
    """
F
fengjiayi 已提交
2365
    ${comment}
2366 2367

    Args:
2368 2369 2370
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2371
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2372
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2373 2374
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2375
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2376 2377 2378 2379 2380 2381
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2382 2383 2384
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2385
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2386
                        layer will be named automatically.
2387
        exclusive (bool): Whether to exclude padding points in average pooling
2388
                          mode, default is true
F
fengjiayi 已提交
2389

2390
    Returns:
F
fengjiayi 已提交
2391
        Variable: The pooling result.
F
fengjiayi 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2405 2406 2407 2408
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2409
                            global_pooling=False)
Y
Yu Yang 已提交
2410 2411 2412 2413 2414
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2415

C
chengduoZH 已提交
2416 2417 2418 2419 2420
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2421 2422 2423 2424
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2425 2426
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2427

C
Add doc  
chengduoZH 已提交
2428
    l_type = 'pool2d'
2429 2430

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2431
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2432
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2433 2434

    helper.append_op(
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2446 2447
            "use_mkldnn": False,
            "exclusive": exclusive,
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2461 2462
           name=None,
           exclusive=True):
2463 2464
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2465
    pooling configurations mentioned in input parameters.
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2478
        exclusive (bool): Whether to exclude padding points in average pooling
2479
                          mode, default is true
2480

2481
    Returns:
2482
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2483 2484 2485 2486 2487
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2488

C
chengduoZH 已提交
2489 2490 2491 2492 2493
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2494 2495 2496
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2497

C
chengduoZH 已提交
2498 2499
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2500

2501 2502
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2503
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2504
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2505 2506

    helper.append_op(
2507
        type=l_type,
Y
Yu Yang 已提交
2508 2509 2510 2511 2512 2513 2514
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2515
            "paddings": pool_padding,
2516
            "use_cudnn": use_cudnn,
2517
            "ceil_mode": ceil_mode,
2518 2519
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2520 2521 2522 2523 2524
        })

    return pool_out


2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2572 2573
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2574
          pool_out = fluid.layers.adaptive_pool2d(
2575 2576
                            input=data,
                            pool_size=[3, 3],
2577
                            pool_type='avg')
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2588
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2614
    return (pool_out, mask) if require_index else pool_out
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2668 2669
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2670
          pool_out, mask = fluid.layers.adaptive_pool3d(
2671 2672
                            input=data,
                            pool_size=[3, 3],
2673
                            pool_type='avg')
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2684
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2710
    return (pool_out, mask) if require_index else pool_out
2711 2712


Y
Yu Yang 已提交
2713 2714 2715 2716 2717 2718 2719
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2720
               data_layout='NCHW',
Y
Yang Yang 已提交
2721
               in_place=False,
2722 2723
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2724
               moving_variance_name=None,
2725
               do_model_average_for_mean_and_var=False,
2726 2727
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2728
    """
Q
qiaolongfei 已提交
2729 2730 2731 2732
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2733

Q
qiaolongfei 已提交
2734
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2735

Q
qiaolongfei 已提交
2736 2737
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2738 2739 2740
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2753

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2767
    Args:
Q
qiaolongfei 已提交
2768
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2769 2770 2771 2772
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2773 2774 2775 2776 2777 2778 2779 2780
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2781
        data_layout(string, default NCHW): NCHW|NHWC
2782
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2783 2784 2785 2786
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2787
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2788
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2789 2790 2791 2792 2793
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2794 2795

    Returns:
Q
qiaolongfei 已提交
2796
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2797 2798 2799 2800 2801 2802 2803

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2804
    """
C
chengduo 已提交
2805
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2806 2807 2808
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2809 2810 2811 2812
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2830 2831 2832
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2833 2834

    bias = helper.create_parameter(
2835
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2836 2837 2838
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2839

2840 2841
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2842 2843 2844
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2845
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2846
        shape=param_shape,
W
Wu Yi 已提交
2847
        dtype=dtype)
2848 2849 2850 2851 2852 2853
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2854
            trainable=False,
W
wanghaoshuang 已提交
2855
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2856
        shape=param_shape,
W
Wu Yi 已提交
2857
        dtype=dtype)
2858
    variance.stop_gradient = True
Y
Yu Yang 已提交
2859 2860 2861 2862 2863 2864

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2865 2866 2867 2868
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2869

X
Xin Pan 已提交
2870 2871
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2889 2890 2891 2892
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2893
            "use_mkldnn": False,
2894 2895
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2896
        })
Y
Yu Yang 已提交
2897 2898 2899 2900

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2901
@templatedoc()
G
guosheng 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2912
    ${comment}
G
guosheng 已提交
2913 2914 2915

    The formula is as follows:

Y
yuyang18 已提交
2916
    ..  math::
G
guosheng 已提交
2917 2918 2919 2920 2921 2922 2923

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2924 2925 2926 2927 2928 2929 2930 2931
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2932

G
guosheng 已提交
2933 2934
    Args:
        input(Variable): The input tensor variable.
2935
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2936
            normalization. Default True.
2937
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2938 2939
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2940
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2941
            Default 1.
2942
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2943
            division by zero. Default 1e-05.
G
guosheng 已提交
2944
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2945 2946
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2947 2948
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2949
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2950 2951
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2952
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2953
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2954
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2955 2956 2957
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2958 2959

    Returns:
Y
yuyang18 已提交
2960
        ${y_comment}
G
guosheng 已提交
2961 2962 2963

    Examples:

Y
yuyang18 已提交
2964 2965 2966
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2982
    if shift:
G
guosheng 已提交
2983 2984 2985 2986 2987 2988
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2989 2990 2991 2992 2993
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3021
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3087 3088 3089 3090
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3091 3092 3093
                     padding=0,
                     stride=1,
                     dilation=1,
3094
                     groups=None,
C
caoying03 已提交
3095
                     param_attr=None,
3096
                     bias_attr=None,
C
chengduoZH 已提交
3097
                     use_cudnn=True,
3098
                     act=None,
C
caoying03 已提交
3099
                     name=None):
Y
Yu Yang 已提交
3100
    """
3101 3102 3103 3104 3105 3106 3107 3108
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3109 3110
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3111 3112 3113
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3114 3115 3116 3117 3118

    For each input :math:`X`, the equation is:

    .. math::

3119
        Out = \sigma (W \\ast X + b)
3120

3121
    Where:
3122 3123 3124

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3125 3126 3127 3128
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3129

3130 3131 3132 3133
    Example:

        - Input:

3134
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3135

3136
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3137 3138 3139

        - Output:

3140
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3141 3142

        Where
Y
Yu Yang 已提交
3143

3144 3145
        .. math::

3146 3147
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3148 3149
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3150 3151

    Args:
3152 3153 3154 3155
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3156 3157 3158 3159
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3188
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3189 3190 3191
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3192
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3193
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3194 3195

    Returns:
3196
        Variable: The tensor variable storing the convolution transpose result.
3197 3198

    Raises:
3199 3200
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3201 3202 3203 3204

    Examples:
       .. code-block:: python

3205 3206
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3207
    """
C
chengduo 已提交
3208
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3209 3210 3211 3212 3213 3214 3215 3216
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3217 3218 3219
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3220 3221 3222
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3223

C
chengduoZH 已提交
3224 3225
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3226

Y
Yu Yang 已提交
3227 3228 3229 3230 3231
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3232

Y
Yu Yang 已提交
3233 3234
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3235

C
chengduoZH 已提交
3236
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3237
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3238
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3239
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3240
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3241 3242 3243
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3244

3245 3246 3247 3248 3249 3250 3251
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3252
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3253
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3254

Y
Yu Yang 已提交
3255 3256 3257
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3258
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3259
    helper.append_op(
3260
        type=op_type,
Y
Yu Yang 已提交
3261 3262
        inputs={'Input': [input],
                'Filter': [img_filter]},
3263
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3264
        attrs={
3265
            'output_size': output_size,
3266 3267 3268 3269 3270
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3271 3272
        })

3273 3274 3275
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3276 3277


3278
def conv3d_transpose(input,
Y
Yu Yang 已提交
3279 3280 3281
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3282 3283 3284
                     padding=0,
                     stride=1,
                     dilation=1,
3285
                     groups=None,
C
caoying03 已提交
3286
                     param_attr=None,
3287
                     bias_attr=None,
C
chengduoZH 已提交
3288
                     use_cudnn=True,
3289
                     act=None,
C
caoying03 已提交
3290
                     name=None):
Y
Yu Yang 已提交
3291
    """
3292
    **Convlution3D transpose layer**
3293

3294
    The convolution3D transpose layer calculates the output based on the input,
3295
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3296 3297 3298 3299 3300 3301
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3302 3303 3304
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3305 3306 3307 3308 3309

    For each input :math:`X`, the equation is:

    .. math::

3310
        Out = \sigma (W \\ast X + b)
3311 3312 3313

    In the above equation:

3314 3315
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3316 3317 3318 3319
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3320

3321 3322 3323 3324
    Example:

        - Input:

3325
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3326

3327
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3328 3329 3330

        - Output:

3331
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3332 3333

        Where
Y
Yu Yang 已提交
3334

3335 3336
        .. math::

3337 3338 3339
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3340 3341

    Args:
3342
        input(Variable): The input image with [N, C, D, H, W] format.
3343 3344 3345
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3346
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3347 3348
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3349
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3350 3351 3352
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3353 3354
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3355
        stride(int|tuple): The stride size. If stride is a tuple, it must
3356 3357
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3358
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3359 3360 3361
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3362 3363 3364 3365 3366
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3376 3377
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3378 3379
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3380 3381
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3382 3383

    Returns:
3384
        Variable: The tensor variable storing the convolution transpose result.
3385 3386

    Raises:
3387 3388
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3389 3390 3391 3392

    Examples:
       .. code-block:: python

3393 3394
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3395
    """
C
chengduo 已提交
3396
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3397 3398
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3399
    if not isinstance(input, Variable):
3400
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3401 3402
    input_channel = input.shape[1]

3403 3404 3405
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3406

C
chengduoZH 已提交
3407 3408 3409
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3410 3411 3412 3413 3414 3415
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3416 3417 3418
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3419

3420
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3421
                         padding[0] - 1) // dilation[0] + 1
3422
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3423
                         padding[1] - 1) // dilation[1] + 1
3424
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3425
                         padding[2] - 1) // dilation[2] + 1
3426
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3427
    else:
3428 3429
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3430

3431
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3432
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3433 3434 3435
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3436
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3437
    helper.append_op(
3438
        type=l_type,
Y
Yu Yang 已提交
3439 3440
        inputs={'Input': [input],
                'Filter': [img_filter]},
3441
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3442 3443 3444 3445
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3446
            'groups': groups,
C
chengduoZH 已提交
3447 3448
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3449

3450 3451
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3452
    return out
Y
yangyaming 已提交
3453 3454


Y
yangyaming 已提交
3455
def sequence_expand(x, y, ref_level=-1, name=None):
3456
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3457 3458 3459 3460
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3461 3462 3463 3464 3465

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3466
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3467
                x.data = [[a], [b], [c], [d]]
3468 3469 3470
                x.dims = [4, 1]

            y is a LoDTensor:
3471 3472
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3473

Y
yangyaming 已提交
3474
            ref_level: 0
3475

Y
yangyaming 已提交
3476
            then output is a 1-level LoDTensor:
3477
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3478
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3479 3480 3481 3482
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3483
                x.data = [[a], [b], [c]]
3484 3485 3486
                x.dims = [3, 1]

            y is a LoDTensor:
3487
                y.lod = [[2, 0, 3]]
3488

Y
yangyaming 已提交
3489
            ref_level: -1
3490

Y
yangyaming 已提交
3491 3492 3493
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3494 3495 3496
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3497 3498
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3499
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3500
                        will be named automatically.
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3511
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3512
    """
Y
yangyaming 已提交
3513
    helper = LayerHelper('sequence_expand', input=x, **locals())
3514
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3515
    tmp = helper.create_variable_for_type_inference(dtype)
3516
    helper.append_op(
Y
yangyaming 已提交
3517 3518 3519 3520 3521
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3522
    return tmp
3523 3524


C
chengduo 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3581
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3582 3583 3584 3585 3586 3587 3588 3589
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3590
@templatedoc()
3591
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3592 3593 3594 3595 3596
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3597 3598 3599
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3600
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3601 3602 3603 3604
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3605 3606 3607
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3608

F
fengjiayi 已提交
3609
    Returns:
M
minqiyang 已提交
3610
        Variable: The padded sequence batch and the original lengths before
3611
                  padding. All sequences has the same length.
M
minqiyang 已提交
3612

F
fengjiayi 已提交
3613 3614 3615 3616 3617 3618 3619
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3620
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3621
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3622 3623 3624 3625 3626
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3627 3628
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3629 3630 3631 3632

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3633 3634 3635 3636 3637 3638
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3639 3640
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3641
        attrs={'padded_length': maxlen})
3642
    return out, length
F
fengjiayi 已提交
3643 3644


3645
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3646
    """
3647
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3648

3649 3650
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3660 3661 3662
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3663
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3664 3665 3666 3667 3668 3669

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3670
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3671 3672 3673 3674 3675 3676

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3677 3678
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3693
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3705 3706 3707 3708 3709 3710 3711 3712 3713
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3714 3715
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3716 3717 3718

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3719 3720

    This layer does the search in beams for one time step. Specifically, it
3721 3722 3723 3724 3725 3726
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3727

3728 3729 3730 3731 3732 3733 3734 3735
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3736

3737
    Args:
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3763

3764
    Returns:
3765 3766
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3767 3768 3769 3770

    Examples:
        .. code-block:: python

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3788 3789 3790 3791
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3792 3793 3794
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3795 3796 3797 3798 3799

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3800
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3818 3819 3820 3821 3822 3823 3824
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3825

3826 3827 3828 3829 3830 3831 3832 3833 3834
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3835

3836 3837 3838 3839 3840 3841
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3842

3843 3844
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3845

3846 3847 3848 3849 3850 3851
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3852 3853
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3869 3870 3871 3872
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3873
              param_attr=None,
C
caoying03 已提交
3874 3875
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3876 3877 3878 3879
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3880
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3881

3882
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3883

3884
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3885

3886
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3887 3888 3889

            h_t & = o_t tanh(c_t)

3890 3891 3892 3893 3894 3895
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3896 3897 3898

        .. math::

3899
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3900 3901 3902 3903 3904 3905 3906 3907

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3908
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3909 3910

    Args:
Y
yangyaming 已提交
3911 3912 3913 3914 3915 3916
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3917
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3930 3931
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3932 3933

    Returns:
Y
yangyaming 已提交
3934
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3935 3936

    Raises:
3937 3938 3939 3940
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3941 3942 3943 3944 3945 3946

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3947
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3948
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3949
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3966
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3967 3968 3969 3970
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3971 3972
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3973 3974 3975
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3976
    size = cell_t_prev.shape[1]
3977
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3978 3979
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3980
                param_attr=param_attr,
3981
                bias_attr=bias_attr)
Y
yangyaming 已提交
3982
    dtype = x_t.dtype
X
Xin Pan 已提交
3983 3984
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3994
    return h, c
G
guosheng 已提交
3995 3996


C
caoying03 已提交
3997
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3998
    """
Y
yangyaming 已提交
3999
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4000 4001 4002

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4003
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4004 4005
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4006 4007
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4008
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4009
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4010
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4011 4012
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4013 4014 4015

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4016

G
guosheng 已提交
4017 4018 4019 4020 4021 4022
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4023
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4024 4025 4026 4027
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4028 4029 4030 4031

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4032
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4033 4034 4035
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4036 4037
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4038
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4039 4040
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4041 4042 4043 4044 4045
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4046
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4047 4048 4049 4050
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4051 4052


C
caoying03 已提交
4053
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4054
    """
Y
Yibing Liu 已提交
4055
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4056 4057 4058

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4059 4060 4061
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4062
            must be in the range :math:`[-rank(input), rank(input))`. If
4063
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4064
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4065 4066
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4067
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4068
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4069
                       will be named automatically.
G
guosheng 已提交
4070 4071

    Returns:
Y
Yibing Liu 已提交
4072
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4073

G
guosheng 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4084 4085
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4086 4087 4088 4089 4090 4091 4092

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4093 4094
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4095
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4096 4097
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4098 4099 4100 4101 4102
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4103
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4104 4105 4106 4107
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4108 4109


C
caoying03 已提交
4110
def reduce_max(input, dim=None, keep_dim=False, name=None):
4111
    """
Y
yangyaming 已提交
4112
    Computes the maximum of tensor elements over the given dimension.
4113 4114 4115

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4116
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4117 4118 4119
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4120
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4121 4122
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4123
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4124 4125
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4126 4127 4128

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4129

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4141 4142 4143 4144 4145 4146 4147

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4148 4149
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4150
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4151 4152
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4153 4154 4155 4156 4157
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4158
            'dim': dim if dim != None else [0],
4159 4160 4161 4162 4163 4164
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4165
def reduce_min(input, dim=None, keep_dim=False, name=None):
4166
    """
Y
yangyaming 已提交
4167
    Computes the minimum of tensor elements over the given dimension.
4168 4169 4170

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4171
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4172 4173 4174
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4175
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4176 4177
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4178
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4179 4180
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4181 4182 4183

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4184

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4196 4197 4198 4199 4200 4201 4202

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4203 4204
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4205
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4206 4207
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4208 4209 4210 4211 4212
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4213
            'dim': dim if dim != None else [0],
4214 4215 4216 4217
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4218 4219


4220 4221 4222 4223 4224 4225
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4226
        dim (list|int|None): The dimensions along which the product is performed. If
4227 4228
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4229 4230
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4231 4232 4233
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4234
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4235
            layer will be named automatically.
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4250
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4251
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4252 4253 4254 4255 4256 4257 4258

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4259 4260
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4261
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4262 4263
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4264 4265 4266 4267 4268
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4269
            'dim': dim if dim != None else [0],
4270 4271 4272 4273 4274 4275
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4276
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4277
    """
C
caoying03 已提交
4278
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4279 4280 4281

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4282 4283 4284 4285 4286
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4287
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4288
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4289
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4290 4291
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4292 4293

    Returns:
D
dzhwinter 已提交
4294
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4304 4305
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4321
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4344
    .. math::
4345 4346

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4347 4348 4349 4350 4351

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4352
        x(Variable|list): The input tensor to l2_normalize layer.
4353
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4354 4355
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4356
        epsilon(float): The epsilon value is used to avoid division by zero, \
4357
            the defalut value is 1e-10.
4358
        name(str|None): A name for this layer(optional). If set None, the layer \
4359
            will be named automatically.
C
caoying03 已提交
4360 4361

    Returns:
4362
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4363 4364

    Examples:
4365

C
caoying03 已提交
4366 4367
        .. code-block:: python

4368 4369 4370 4371
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4372 4373
    """

F
fengjiayi 已提交
4374 4375
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4376 4377
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4378 4379
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4380
    helper.append_op(
4381 4382 4383 4384
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4385
        attrs={
4386 4387
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4388 4389
        })
    return out
4390 4391


S
sneaxiy 已提交
4392
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4393
    """
Y
ying 已提交
4394 4395 4396 4397
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4398

C
chengduoZH 已提交
4399
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4400
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4401

4402 4403 4404 4405 4406
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4407
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4408

C
chengduoZH 已提交
4409
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4410
      performs in the following way.
G
guosheng 已提交
4411

4412
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4413
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4414
        last two dimensions and a batched matrix multiply supporting broadcast
4415
        applies on the two tensors.
G
guosheng 已提交
4416

Y
ying 已提交
4417 4418
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4419
    removed after matrix multiplication.
G
guosheng 已提交
4420 4421 4422

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4423 4424 4425
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4426
        alpha (float): The scale of output. Default 1.0.
4427
        name(str|None): A name for this layer(optional). If set None, the layer
4428
            will be named automatically.
G
guosheng 已提交
4429 4430

    Returns:
4431
        Variable: The product Tensor variable.
G
guosheng 已提交
4432

G
guosheng 已提交
4433 4434 4435
    Examples:
        .. code-block:: python

4436
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4437 4438
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4439

4440 4441
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4442

4443 4444
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4445

4446 4447
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4448 4449 4450 4451

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4452 4453
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4454

Y
ying 已提交
4455
            # x: [M], y: [N]
4456
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4457
    """
Y
ying 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4470
            y_shape = y_shape + [1]
Y
ying 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4487
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4488
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4489
    helper.append_op(
4490 4491 4492 4493
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4494 4495 4496
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4497
            'alpha': float(alpha),
S
sneaxiy 已提交
4498
        })
4499
    return out
4500 4501


4502
def topk(input, k, name=None):
Q
qingqing01 已提交
4503 4504 4505 4506
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4507
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4508 4509 4510 4511 4512 4513
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4535 4536 4537
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4538
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4539
                 of input.
4540
        name(str|None): A name for this layer(optional). If set None, the layer
4541
                       will be named automatically.
F
fengjiayi 已提交
4542
                       Default: None
Q
qingqing01 已提交
4543 4544

    Returns:
4545 4546 4547
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4548
        within the last dimension of input.
Q
qingqing01 已提交
4549

F
fengjiayi 已提交
4550 4551
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4552 4553 4554 4555 4556 4557 4558

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4559 4560
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4561 4562 4563 4564 4565 4566
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4567 4568
    helper.append_op(
        type="top_k",
W
whs 已提交
4569
        inputs=inputs,
Q
qingqing01 已提交
4570 4571
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4572
        attrs=attrs)
Q
qingqing01 已提交
4573 4574 4575 4576 4577
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4578
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4579
    """
Y
ying 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4589

Y
ying 已提交
4590
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4591

4592
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4593 4594
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4595
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4596

4597
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4598 4599
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4600

4601 4602 4603
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4604
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4605
                          the length of reference string.
4606
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4607
                                     calculating edit distance.
4608
        name (str): The name of this layer. It is optional.
4609

W
wanghaoshuang 已提交
4610
    Returns:
W
wanghaoshuang 已提交
4611
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4612 4613 4614 4615

    Examples:
        .. code-block:: python

T
tink2123 已提交
4616 4617
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4618
            cost = fluid.layers.edit_distance(input=x,label=y)
4619
    """
4620
    helper = LayerHelper("edit_distance", **locals())
4621

4622
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4623
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4624 4625
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4626 4627 4628 4629 4630

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4631
            attrs={"tokens": ignored_tokens})
4632 4633 4634 4635 4636
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4637
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4638
            attrs={"tokens": ignored_tokens})
4639 4640
        label = erased_label

4641
    # edit distance op
X
Xin Pan 已提交
4642 4643
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4644 4645 4646 4647
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4648 4649
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4650 4651
        attrs={"normalized": normalized})

4652
    return edit_distance_out, sequence_num
4653 4654 4655 4656 4657


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4658

Y
ying 已提交
4659 4660 4661 4662
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4680
        input.lod = [[4, 4]]
H
haowang101779990 已提交
4681
      
W
whs 已提交
4682
        Computation:
4683

W
whs 已提交
4684 4685 4686 4687 4688 4689
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4690 4691 4692 4693 4694

        output.data = [[2],
                       [1],
                       [3]]

4695
        output.lod = [[2, 1]]
4696

W
whs 已提交
4697

4698 4699
    Args:

Y
ying 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4709
        name (str): The name of this layer. It is optional.
4710 4711

    Returns:
H
haowang101779990 已提交
4712 4713 4714 4715
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
                  LoD [[]] and dims [1, 1]. 
4716 4717 4718 4719 4720

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4721

4722
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4723
    """
4724
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4725
    _, topk_indices = topk(input, k=1)
4726 4727

    # ctc align op
X
Xin Pan 已提交
4728
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4729 4730 4731
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4732
        outputs={"Output": [ctc_out]},
4733 4734
        attrs={"merge_repeated": True,
               "blank": blank})
4735
    return ctc_out
4736 4737


W
Wu Yi 已提交
4738
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4739
    """
4740 4741
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4742
    to compute Connectionist Temporal Classification (CTC) loss.
4743 4744
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4745 4746 4747
    input tensor.

    Args:
4748
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4749 4750 4751 4752
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4753
       label (Variable): The ground truth of variable-length sequence,
4754 4755 4756
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4757 4758
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4759 4760 4761
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4762
         follewed by a mean_op.
W
Wu Yi 已提交
4763
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4764 4765

    Returns:
4766 4767
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4768 4769

    Examples:
4770

W
wanghaoshuang 已提交
4771
        .. code-block:: python
4772

4773 4774 4775
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4776 4777

    """
F
fengjiayi 已提交
4778
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4779 4780
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4781 4782 4783 4784 4785 4786
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4787 4788 4789 4790 4791
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4792
    return loss_out
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4808 4809 4810
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4811 4812 4813 4814 4815
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4816

4817
            out.lod  = [[0, 1, 3]]
4818 4819 4820 4821

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4822 4823 4824 4825 4826 4827 4828
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4829 4830 4831

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4832 4833

    Returns:
4834

4835 4836 4837 4838 4839
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4840
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4841
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4842 4843
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4844
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4845 4846 4847 4848 4849 4850
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4851 4852


4853 4854 4855 4856
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4857 4858 4859 4860 4861 4862
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4863
        num_neg_samples=None,
4864 4865 4866
        name=None,
        sampler="uniform",
        custom_dist=None,
4867 4868
        seed=0,
        is_sparse=False):
4869 4870 4871 4872 4873 4874 4875
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4876 4877
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4878
            sample is 1.0.
C
chengduo 已提交
4879 4880 4881 4882 4883 4884 4885 4886 4887
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4888
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4889 4890
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4891 4892 4893
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4894
        custom_dist (float[]): A float[] with size=num_total_classes.
4895 4896 4897 4898
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4899
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4900

4901
    Returns:
Y
Yibing Liu 已提交
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4929 4930 4931 4932 4933 4934 4935 4936 4937

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4938

4939
    """
Y
Yang Yu 已提交
4940 4941 4942
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4943 4944

    dim = input.shape[1]
Y
Yang Yu 已提交
4945 4946 4947 4948 4949 4950
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4951
    inputs = {}
C
chengduo 已提交
4952 4953 4954 4955 4956 4957 4958
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4959 4960 4961
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4962

4963 4964 4965 4966
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4967 4968 4969 4970 4971 4972 4973

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5026 5027 5028 5029
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5030 5031 5032 5033 5034
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5035 5036
    attrs = {
        'num_total_classes': int(num_total_classes),
5037 5038
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5039 5040
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5041
    }
Y
Yang Yu 已提交
5042 5043 5044

    helper.append_op(
        type='nce',
C
chengduo 已提交
5045
        inputs=inputs,
Y
Yang Yu 已提交
5046 5047 5048 5049 5050 5051
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5052
    return cost / (num_neg_samples + 1)
5053 5054


C
chengduo 已提交
5055 5056
def hsigmoid(input,
             label,
5057
             num_classes,
C
chengduo 已提交
5058 5059
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5060
             name=None,
5061 5062 5063
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5064
             is_sparse=False):
W
weixing02 已提交
5065 5066
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5067
    process of language model. This operator organizes the classes into a
H
haowang101779990 已提交
5068
    complete binary tree, or you can use is_custom to pass your own tree to 
5069
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5070 5071 5072 5073 5074 5075
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5076
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5077
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5078

5079 5080
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5081 5082 5083 5084 5085 5086
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
    4. now, each word should has its path and code along the path, you can pass a batch of path and code 
       related to the same batch of inputs.
5087

W
weixing02 已提交
5088
    Args:
M
minqiyang 已提交
5089
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5090 5091 5092 5093
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
H
haowang101779990 已提交
5094 5095
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
5096
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
H
haowang101779990 已提交
5108
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
5109
            it should be in leaf -> root order
H
haowang101779990 已提交
5110 5111 5112
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
5113
            each code consist with every code of parent nodes. it should be in leaf -> root order
H
haowang101779990 已提交
5114
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
5115
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
H
haowang101779990 已提交
5116
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
5117
             of W and input will be sparse.
W
weixing02 已提交
5118 5119

    Returns:
J
JiabinYang 已提交
5120
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5121 5122 5123 5124 5125

    Examples:

        .. code-block:: python

G
guosheng 已提交
5126 5127 5128
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5129 5130 5131 5132
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5133 5134
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5135
    dim = input.shape[1]
5136
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5137 5138 5139
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5140 5141 5142 5143
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5144 5145
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5146 5147 5148
    else:
        pass

J
JiabinYang 已提交
5149 5150
    weights = None

5151
    if not is_custom:
J
JiabinYang 已提交
5152 5153 5154 5155 5156 5157 5158 5159
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5160
            shape=[num_classes, dim],
J
JiabinYang 已提交
5161 5162
            is_bias=False,
            dtype=input.dtype)
5163 5164 5165
    inputs = {
        "X": input,
        "W": weights,
5166 5167
        "PTable": path_table,
        "PathCode": path_code,
5168 5169
        "Label": label
    }
W
weixing02 已提交
5170
    if helper.bias_attr:
5171
        if not is_custom:
J
JiabinYang 已提交
5172 5173
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5174
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5175 5176 5177 5178 5179 5180
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5181
                shape=[num_classes, 1],
J
JiabinYang 已提交
5182 5183 5184
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5185 5186
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5187
        inputs=inputs,
W
weixing02 已提交
5188 5189
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5190 5191
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5192 5193 5194
    return out


Y
fix ci.  
ying 已提交
5195
def transpose(x, perm, name=None):
Y
ying 已提交
5196 5197 5198 5199 5200 5201 5202
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5203 5204 5205
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5206 5207 5208 5209 5210 5211 5212

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5213
            # use append_batch_size=False to avoid prepending extra
5214
            # batch size in shape
5215
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5216
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5217
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5218 5219
    """

Y
fix ci.  
ying 已提交
5220
    if len(perm) != len(x.shape):
Y
ying 已提交
5221 5222 5223
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5224 5225 5226 5227 5228 5229
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5230 5231

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5232 5233
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5234
    helper.append_op(
5235
        type='transpose2',
Y
fix ci.  
ying 已提交
5236
        inputs={'X': [x]},
5237 5238
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5239 5240
        attrs={'axis': perm})
    return out
5241 5242


5243 5244 5245 5246 5247 5248 5249
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5250
    """
5251 5252 5253 5254 5255 5256 5257
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5286 5287 5288 5289 5290 5291 5292 5293 5294
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5295 5296 5297
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5298 5299 5300 5301 5302
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5330 5331 5332
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5345
            output.dims = {8, 8}
5346

5347
            output.lod = [[4, 4]]
5348

T
Tink_Y 已提交
5349
    Examples:
5350 5351 5352

        .. code-block:: python

5353 5354
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5355 5356

    """
W
wanghaoshuang 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5367 5368 5369 5370 5371 5372 5373
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5374
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5375
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5376
    helper.append_op(
5377
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5378
    return out
5379 5380


Y
yuyang18 已提交
5381
@templatedoc()
5382
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5383 5384
    """
    ${comment}
5385 5386

    Args:
Y
yuyang18 已提交
5387
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5388 5389
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5390 5391 5392 5393 5394
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5395
        ${out_comment}.
5396 5397

    Examples:
Y
yuyang18 已提交
5398 5399 5400 5401
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5402 5403 5404 5405 5406 5407
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5408
    out = helper.create_variable_for_type_inference(dtype)
5409 5410 5411 5412 5413
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5414
    return helper.append_activation(out)
5415 5416


Y
yuyang18 已提交
5417
@templatedoc()
5418 5419
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5420 5421 5422 5423 5424 5425 5426
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5427 5428

    Args:
Y
yuyang18 已提交
5429 5430
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5431 5432

    Returns:
Y
yuyang18 已提交
5433
        ${out_comment}.
5434 5435
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5436 5437 5438 5439 5440

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5441
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5442 5443 5444 5445 5446 5447
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5448 5449


5450 5451 5452
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5453
                               ignore_index=kIgnoreIndex,
5454 5455
                               numeric_stable_mode=False,
                               return_softmax=False):
5456 5457
    """
    **Softmax With Cross Entropy Operator.**
5458

5459 5460 5461 5462
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5463

5464 5465 5466
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5467

5468 5469 5470
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5471

5472
    The equation is as follows:
5473

5474
    1) Hard label (one-hot label, so every sample has exactly one class)
5475

5476 5477 5478 5479
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5480

5481 5482 5483
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5484

5485 5486 5487 5488
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5489 5490 5491
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5492

H
haowang101779990 已提交
5493
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5494

H
haowang101779990 已提交
5495
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5496

H
haowang101779990 已提交
5497
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5498 5499 5500

    and then cross entropy loss is calculated by softmax and label.

5501 5502 5503 5504 5505 5506 5507 5508
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5509 5510
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5511
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5512 5513 5514
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5515 5516 5517
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5518
                                    stable algorithm. Default: False
5519
        return_softmax (bool): A flag indicating whether to return the softmax
5520
                               along with the cross entropy loss. Default: False
5521

5522
    Returns:
H
haowang101779990 已提交
5523 5524 5525 5526 5527
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5528 5529 5530 5531 5532 5533 5534

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5535 5536
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5537 5538
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5539 5540
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5541 5542 5543 5544 5545 5546
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5547 5548 5549 5550 5551
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5552 5553 5554 5555

    if return_softmax:
        return loss, softmax

5556 5557 5558 5559 5560
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5561 5562
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5563
    For each instance, it computes the smooth L1 loss element by element first
5564
    and then sums all the losses. So the shape of ouput Variable is
5565
    [batch_size, 1].
5566

5567 5568
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5569
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5570
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5571
            L1 loss op with same shape as :attr:`x`.
5572
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5573 5574
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5575
            by this tensor element by element.
5576
        outside_weight (Variable|None): A tensor with rank at least 2. This
5577 5578
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5579
            element by element.
5580
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5581 5582
           scalar with default value 1.0.

5583
    Returns:
5584
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5585 5586 5587 5588 5589

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5590 5591
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5592
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5593
            out = fluid.layers.smooth_l1(x=fc, y=label)
5594
    """
5595

5596
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5597 5598
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5611 5612 5613 5614


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5615
    This layer creates the one-hot representations for input indices.
5616 5617

    Args:
Y
Yibing Liu 已提交
5618 5619
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5620 5621

    Returns:
Y
Yibing Liu 已提交
5622
        Variable: The one-hot representations of input.
5623 5624

    Examples:
C
caoying03 已提交
5625
        .. code-block:: python
5626

Y
Yibing Liu 已提交
5627 5628
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5629 5630
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5631
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5632 5633 5634 5635 5636 5637
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5638 5639


Y
Yu Yang 已提交
5640
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5641
    """
Y
yi.wu 已提交
5642 5643 5644
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5645 5646 5647 5648 5649 5650

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5651 5652
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5653 5654 5655 5656 5657 5658

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5659 5660
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5661 5662
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5663 5664 5665 5666 5667
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5668
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5669
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5670 5671
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5672 5673
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5674 5675 5676
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5677 5678


5679
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5680
    """
C
caoying03 已提交
5681 5682
    Gives a new shape to the input Tensor without changing its data.

5683 5684 5685 5686 5687
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5688

5689
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5690

5691 5692 5693 5694
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5695
    2. 0 means the actual dimension value is going to be copied from the
5696 5697 5698 5699
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5700 5701

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5702
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5703
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5704

5705
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5706 5707
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5708 5709
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5710
    dimensions.
C
caoying03 已提交
5711

5712
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5713 5714 5715 5716
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5717 5718

    Args:
5719
        x(variable): The input tensor.
C
caoying03 已提交
5720 5721
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5722 5723 5724 5725 5726
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5727 5728
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5729 5730 5731 5732 5733 5734 5735
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5736
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5737

5738
    Returns:
G
guosheng 已提交
5739 5740 5741 5742
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5743

X
Xin Pan 已提交
5744 5745 5746
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5747 5748
    Examples:
        .. code-block:: python
G
guosheng 已提交
5749

5750
            data = fluid.layers.data(
5751
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5752
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5753
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5754 5755 5756
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5757
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5758 5759 5760 5761 5762
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5779
    helper = LayerHelper("reshape2", **locals())
5780 5781
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5782
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5783
    helper.append_op(
5784
        type="reshape2",
X
Xin Pan 已提交
5785
        inputs=inputs,
D
dzhwinter 已提交
5786
        attrs={"shape": shape},
5787 5788
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5789

D
dzhwinter 已提交
5790
    return helper.append_activation(out)
5791

5792

5793
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5794
    """
M
minqiyang 已提交
5795 5796 5797
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5798
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5799

H
haowang101779990 已提交
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
5821

Y
Yibing Liu 已提交
5822
    Args:
5823
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5824
        axes (list): List of integers, indicating the dimensions to be squeezed.
5825
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5826 5827 5828 5829 5830 5831 5832 5833

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5834
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5835 5836
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5837 5838
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5839
    helper.append_op(
5840
        type="squeeze2",
5841
        inputs={"X": input},
Y
Yibing Liu 已提交
5842
        attrs={"axes": axes},
5843 5844
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5845

5846 5847 5848
    return out


5849
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5850
    """
M
minqiyang 已提交
5851 5852 5853
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5854

M
minqiyang 已提交
5855
    For example:
H
haowang101779990 已提交
5856 5857 5858

    .. code-block:: text

M
minqiyang 已提交
5859
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5860
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5861

Y
Yibing Liu 已提交
5862
    Args:
5863
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5864
        axes (list): List of integers, indicating the dimensions to be inserted.
5865
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5866 5867 5868 5869 5870 5871 5872 5873

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5874
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5875 5876
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5877 5878
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5879
    helper.append_op(
5880
        type="unsqueeze2",
5881
        inputs={"X": input},
Y
Yibing Liu 已提交
5882
        attrs={"axes": axes},
5883 5884
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5885

5886 5887
    return out

5888

Y
yangyaming 已提交
5889
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5890
    """
Y
Yibing Liu 已提交
5891
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5892 5893 5894 5895
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5896
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5897 5898 5899 5900 5901 5902

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5903
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5904 5905 5906
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5907
            target_lod: [4, 2]
Y
yangyaming 已提交
5908 5909

            then we get a 1-level LoDTensor:
5910
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5911 5912 5913 5914 5915 5916
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5917
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5918 5919 5920 5921
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5922
                y.data = [[2, 4]]
Y
yangyaming 已提交
5923 5924 5925
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5926
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5927 5928 5929 5930 5931 5932
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5933
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5934 5935 5936 5937
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5938
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5939 5940 5941 5942
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5943
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5944 5945 5946 5947 5948
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5949
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5950
                           from :attr:`y`.
Y
yangyaming 已提交
5951
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5952
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5953 5954

    Returns:
Y
Yibing Liu 已提交
5955
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5956 5957

    Raises:
Y
Yibing Liu 已提交
5958
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5968
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5994
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6023 6024
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6037 6038 6039
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6053 6054 6055 6056


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6057
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6058
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6059

G
guosheng 已提交
6060 6061 6062 6063
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6086
                         The length of :attr:paddings must be
G
guosheng 已提交
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6097

G
guosheng 已提交
6098 6099 6100 6101 6102 6103
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6104
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6105 6106 6107 6108 6109 6110 6111
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6112 6113


C
chengduo 已提交
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6145 6146
		And
            pad_value = -1,
C
chengduo 已提交
6147

T
Tink_Y 已提交
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6183
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6193 6194 6195 6196 6197 6198 6199
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6200 6201
    called label-smoothing regularization (LSR).

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6225
                              be :math:`(1, class\_num)`.
6226 6227
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6228
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6248
    smooth_label = helper.create_variable_for_type_inference(dtype)
6249 6250 6251 6252 6253 6254 6255
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6256 6257


W
wopeizl 已提交
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6294 6295


J
jerrywgz 已提交
6296 6297 6298 6299 6300 6301
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6302 6303
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6320 6321 6322
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6323 6324 6325 6326 6327 6328
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6329
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6370 6371
        .. code-block:: python

W
whs 已提交
6372 6373 6374 6375
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6376
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6377 6378 6379 6380 6381 6382
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6383 6384


6385 6386 6387 6388
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6389 6390
                 resample='BILINEAR',
                 actual_shape=None):
6391
    """
Q
qiaolongfei 已提交
6392
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6393

6394
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6395 6396 6397
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6398

6399
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6400

6401
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6402

6403
    Args:
6404
        input (Variable): The input tensor of image resize layer,
6405 6406
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6407
        out_shape(list|tuple|Variable|None): Output shape of image resize
6408 6409
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6410
        scale(float|None): The multiplier for the input height or width.
6411 6412 6413
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6414 6415
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6416
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6417
                       currently.
6418
                       Default: 'BILINEAR'
6419 6420 6421
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6422
                                :attr:`out_shape` and :attr:`scale` specifying
6423 6424 6425 6426 6427 6428 6429
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6430 6431
                                constructing stage.
                                Default: None
6432 6433

    Returns:
Q
update  
qiaolongfei 已提交
6434 6435
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6436

6437 6438 6439
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6440
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6441 6442 6443 6444
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6445 6446 6447
    Examples:
        .. code-block:: python

6448
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6449
    """
6450 6451 6452 6453
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6454 6455
    if resample not in resample_methods:
        raise ValueError(
6456
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6457
        )
6458
    resample_type = resample_methods[resample]
6459
    if out_shape is None and scale is None:
6460
        raise ValueError("One of out_shape and scale must not be None.")
6461
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6462
    dtype = helper.input_dtype()
6463 6464 6465 6466

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6467 6468 6469
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6470
    if out_shape is not None:
6471 6472 6473 6474
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6475
            inputs['OutSize'] = out_shape
6476 6477 6478 6479 6480 6481 6482 6483
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6484 6485 6486 6487
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6488 6489 6490 6491 6492
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6493
    out = helper.create_variable_for_type_inference(dtype)
6494
    helper.append_op(
6495
        type='{}_interp'.format(resample_type),
6496
        inputs=inputs,
6497
        outputs={"Out": out},
6498 6499 6500
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6501
    return out
F
stash  
fengjiayi 已提交
6502 6503


6504
@templatedoc(op_type="bilinear_interp")
6505 6506 6507 6508 6509
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6510
    """
6511 6512
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6513 6514
    in priority order.

6515 6516 6517 6518
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6519 6520
    again in the other direction.

6521
    For details of bilinear interpolation, please refer to Wikipedia:
6522
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6523 6524 6525 6526 6527

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6528

Y
yuyang18 已提交
6529 6530 6531 6532 6533
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6534 6535 6536
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6537
                                :attr:`out_shape` and :attr:`scale` specifying
6538 6539 6540 6541 6542 6543 6544
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6545 6546
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6547 6548 6549

    Returns:
        ${out_comment}.
6550 6551 6552 6553 6554

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6555 6556
    """

6557
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6558 6559


6560
@templatedoc(op_type="nearest_interp")
6561 6562 6563 6564 6565
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6566
    """
6567
    Resize input by performing nearest neighbor interpolation in both the
6568 6569
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6570 6571
    out_shape and scale in priority order.

6572
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6573
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6574 6575 6576 6577 6578

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6579

Y
yuyang18 已提交
6580 6581 6582 6583 6584
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6585 6586 6587
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6588
                                :attr:`out_shape` and :attr:`scale` specifying
6589 6590 6591 6592 6593 6594 6595
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6596 6597
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6598 6599 6600

    Returns:
        ${out_comment}.
6601 6602 6603 6604 6605

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6606 6607
    """

6608
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6609 6610 6611 6612


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6613 6614 6615
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6616 6617 6618 6619 6620 6621 6622
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6623
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6624

6625
    Returns:
Q
update  
qiaolongfei 已提交
6626
        Variable: The output is a 4-D tensor of the shape
6627
        (num_batches, channls, out_h, out_w).
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6638 6639 6640
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6641 6642 6643
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6644 6645
def gather(input, index):
    """
Q
qiaolongfei 已提交
6646 6647
    **Gather Layer**

6648
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6649 6650 6651 6652
    of X indexed by `index` and concatenate them together.

    .. math::

6653
        Out = X[Index]
W
whs 已提交
6654 6655 6656 6657 6658 6659 6660


    .. code-block:: text


                Given:

6661 6662
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6673
        input (Variable): The source input with rank>=1.
W
whs 已提交
6674 6675 6676 6677 6678 6679
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6680

W
whs 已提交
6681 6682 6683 6684 6685 6686
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6687
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6688 6689 6690 6691 6692 6693 6694 6695
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6727
    out = helper.create_variable_for_type_inference(dtype)
6728 6729 6730 6731 6732 6733 6734 6735 6736
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6746

Q
Qingsheng Li 已提交
6747
    Given the following input:
H
haowang101779990 已提交
6748

Q
Qingsheng Li 已提交
6749
    .. code-block:: text
H
haowang101779990 已提交
6750

Q
Qingsheng Li 已提交
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6763

Q
Qingsheng Li 已提交
6764
    .. code-block:: text
H
haowang101779990 已提交
6765

Q
Qingsheng Li 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6781
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6792
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6815

6816 6817 6818
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6819
    """
F
stash  
fengjiayi 已提交
6820
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6821
    dtype = x.dtype
X
Xin Pan 已提交
6822
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6823
    if seed is None:
6824
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6825
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6826
    if isinstance(seed, int):
F
fengjiayi 已提交
6827 6828 6829 6830 6831
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6832 6833 6834 6835
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6836
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6837 6838
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6839 6840
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6841
    return out
W
whs 已提交
6842 6843


6844
def log(x, name=None):
W
wanghaoshuang 已提交
6845 6846 6847 6848 6849
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6850
        Out = \\ln(x)
W
wanghaoshuang 已提交
6851 6852

    Args:
6853
        x (Variable): Input tensor.
6854 6855
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6856 6857 6858 6859 6860 6861 6862 6863

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6864
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6865 6866
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6867
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6868
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6869
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6870 6871 6872
    return out


6873
def relu(x, name=None):
W
wanghaoshuang 已提交
6874 6875
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6876
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6877 6878 6879 6880
    the tensor elementwise.

    .. math::

6881
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6882 6883

    Args:
6884
        x (Variable): The input tensor.
6885 6886
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6887 6888 6889 6890 6891 6892 6893 6894

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6895
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6896 6897
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6898
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6899
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6900 6901
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6902
    return out
6903 6904


C
chengduo 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6946 6947 6948
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6949 6950 6951 6952
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6953
    .. math::
6954

H
haowang101779990 已提交
6955
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6956

6957
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6958 6959 6960 6961 6962
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6963
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6964
                           Its shape should be the same as input.
6965
        num_classes (int): The possible number of labels.
W
whs 已提交
6966 6967

    Returns:
H
haowang101779990 已提交
6968 6969 6970 6971 6972 6973 6974
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable): 
        
                     Three variables:
                      
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6975 6976 6977 6978

    Examples:

        .. code-block:: python
6979

W
whs 已提交
6980 6981 6982 6983
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6984 6985 6986
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6987 6988
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6989 6990
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6991
        outputs={
W
whs 已提交
6992 6993 6994
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6995 6996 6997
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7066
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7067 7068 7069 7070 7071

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7072
            isinstance(shape, Variable)):
7073 7074 7075 7076 7077
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7078
    out = helper.create_variable_for_type_inference(x.dtype)
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7096 7097


W
whs 已提交
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7115

W
whs 已提交
7116
              out_shape = [2, 3, 5, 5]
7117

W
whs 已提交
7118
          Step 1:
7119

W
whs 已提交
7120 7121 7122
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7123

W
whs 已提交
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
H
haowang101779990 已提交
7169 7170
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W]. 
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7183

W
whs 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7195
            isinstance(out_shape, Variable)):
W
whs 已提交
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7217 7218
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7219

7220 7221
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7222
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7223 7224 7225
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7226

7227 7228
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7229

H
haowang101779990 已提交
7230 7231
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7232 7233
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7234

H
haowang101779990 已提交
7235 7236 7237 7238 7239 7240 7241 7242
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7243 7244 7245

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7280
    out = helper.create_variable_for_type_inference("float32")
7281 7282 7283 7284 7285 7286 7287 7288

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7289 7290


M
minqiyang 已提交
7291 7292
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7293
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7294
    which compares left score and right score passed in.
M
minqiyang 已提交
7295
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7296 7297 7298

    .. math::

H
haowang101779990 已提交
7299
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7300 7301

    Args:
M
minqiyang 已提交
7302
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7303 7304
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7305
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7306 7307
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7308

M
minqiyang 已提交
7309
    Returns:
M
minqiyang 已提交
7310
       Variable: The ranking loss.
H
haowang101779990 已提交
7311

M
minqiyang 已提交
7312
    Raises:
M
minqiyang 已提交
7313
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7314

M
minqiyang 已提交
7315
    Examples:
H
haowang101779990 已提交
7316

M
minqiyang 已提交
7317
        .. code-block:: python
H
haowang101779990 已提交
7318

M
minqiyang 已提交
7319 7320 7321 7322 7323
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7324
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7325 7326 7327 7328 7329 7330
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7331 7332
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7356
        .. code-block:: text
W
whs 已提交
7357

T
Tink_Y 已提交
7358
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7359

T
Tink_Y 已提交
7360 7361
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7362

T
Tink_Y 已提交
7363
	      Case 0:
M
minqiyang 已提交
7364

T
Tink_Y 已提交
7365 7366 7367
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7368

T
Tink_Y 已提交
7369 7370 7371
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7372

T
Tink_Y 已提交
7373
	      Case 1:
M
minqiyang 已提交
7374

T
Tink_Y 已提交
7375 7376
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7377

T
Tink_Y 已提交
7378 7379 7380
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7381

T
Tink_Y 已提交
7382
	      Case 2:
M
minqiyang 已提交
7383

T
Tink_Y 已提交
7384 7385
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7386

T
Tink_Y 已提交
7387 7388 7389
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7390 7391


W
whs 已提交
7392 7393
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7394
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7418
    out = helper.create_variable_for_type_inference(dtype)
7419 7420 7421 7422 7423 7424 7425 7426 7427
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7428
    helper.append_op(
7429
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7430 7431 7432 7433

    return out


7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7446 7447 7448 7449 7450

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7451 7452
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7453 7454
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7455
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7476 7477 7478 7479 7480

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7481 7482
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7483 7484
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7485
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7506 7507 7508 7509 7510

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7511 7512
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7513 7514
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7515
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7537 7538 7539 7540 7541

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7542
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7543
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7544 7545
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7546
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7569 7570 7571 7572 7573

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7574 7575
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7576 7577
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7578
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7600 7601 7602 7603 7604

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7605 7606
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7607 7608
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7609
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7610 7611 7612 7613 7614 7615 7616 7617
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7618 7619 7620 7621
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7622 7623
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7624 7625 7626

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7627
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7628
          weight (alpha).
J
jerrywgz 已提交
7629
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7630 7631 7632
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7633
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7634
          will be named automatically.
J
jerrywgz 已提交
7635 7636 7637 7638 7639 7640 7641 7642

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7643
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7657
        attr=helper.param_attr,
J
jerrywgz 已提交
7658 7659 7660 7661
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7662
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7663 7664 7665 7666 7667 7668 7669 7670 7671
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7682
    Returns:
7683
        output(${out_type}): ${out_comment}
7684 7685 7686 7687 7688

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7689 7690
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7691 7692
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7712
    Returns:
7713
        output(${out_type}): ${out_comment}
7714 7715 7716 7717 7718

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7719 7720
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7721 7722
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7723
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7741
    Returns:
7742
        output(${out_type}): ${out_comment}
7743 7744 7745 7746 7747

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7748 7749
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7750 7751
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7752
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7753 7754 7755 7756 7757 7758 7759 7760
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7761 7762 7763 7764
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
H
haowang101779990 已提交
7765 7766 7767 7768
    
    For Example:
    
    .. code-block:: text
7769

H
haowang101779990 已提交
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7791 7792 7793

    Args:
        x (Variable): A tensor of rank >= axis.
7794 7795
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7796 7797 7798 7799 7800 7801 7802 7803
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7804 7805 7806
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
7807 7808 7809 7810
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7811
        ValueError: If axis is not in range [0, rank(x)].
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7828 7829
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7830
    helper.append_op(
7831
        type='flatten2',
7832
        inputs={"X": x},
7833 7834
        outputs={'Out': out,
                 'XShape': x_shape},
7835 7836
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7837 7838


C
chenweihang 已提交
7839
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7840
    """
C
chenweihang 已提交
7841
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7842
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7843 7844
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7845

H
haowang101779990 已提交
7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
7863 7864

    Args:
C
chenweihang 已提交
7865 7866 7867
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7879 7880
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7881 7882 7883 7884 7885 7886
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7887
    return out
7888

7889

S
sneaxiy 已提交
7890 7891 7892 7893 7894 7895 7896 7897 7898
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7899

S
sneaxiy 已提交
7900
    .. math::
7901

S
sneaxiy 已提交
7902 7903 7904
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7905
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7906 7907 7908 7909
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7910 7911 7912
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7913 7914
    Returns:
        Variable: The output sequence mask.
7915

S
sneaxiy 已提交
7916 7917
    """

Q
qingqing01 已提交
7918
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7919
    if name is None:
X
Xin Pan 已提交
7920
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7921
    else:
X
Xin Pan 已提交
7922
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7923

Q
qingqing01 已提交
7924 7925 7926
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7927 7928
        outputs={'Y': out},
        attrs={
7929
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7930 7931 7932
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7933 7934


X
Xin Pan 已提交
7935
def stack(x, axis=0):
S
sneaxiy 已提交
7936 7937 7938 7939
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7940 7941 7942 7943 7944 7945 7946

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7947
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7948
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7949 7950

    Args:
7951
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7952
        axis (int|None): The axis along which all inputs are stacked.
7953

S
sneaxiy 已提交
7954 7955
    Returns:
        Variable: The stacked variable.
7956

S
sneaxiy 已提交
7957 7958
    """

X
Xin Pan 已提交
7959 7960 7961 7962 7963 7964
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7965
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7966
    helper.append_op(
S
sneaxiy 已提交
7967 7968
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7969

X
Xin Pan 已提交
7970
    return out
D
dzhwinter 已提交
7971 7972 7973 7974 7975 7976 7977


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7978

D
dzhwinter 已提交
7979 7980 7981
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7982
    raised.
D
dzhwinter 已提交
7983 7984

    Args:
M
minqiyang 已提交
7985
        x (Variable): Input variable.
D
dzhwinter 已提交
7986 7987
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7988

D
dzhwinter 已提交
7989 7990
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7991

D
dzhwinter 已提交
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8002
    for _ in range(num):
X
Xin Pan 已提交
8003
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8004 8005 8006 8007 8008 8009 8010 8011

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8024

W
whs 已提交
8025 8026 8027 8028
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8029

W
whs 已提交
8030
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8031

W
whs 已提交
8032
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8033

W
whs 已提交
8034 8035 8036 8037
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8038

W
whs 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8055
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8056 8057 8058 8059 8060 8061
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8062 8063


G
fix  
gongweibao 已提交
8064 8065 8066
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8067
@templatedoc()
G
fix  
gongweibao 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8077
    ${comment}
G
fix  
gongweibao 已提交
8078 8079

    Args:
G
gongweibao 已提交
8080 8081 8082
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8083
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8084 8085 8086
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8087 8088
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8089
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8090

8091 8092 8093 8094 8095
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8096 8097 8098
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8099
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8116 8117


G
gongweibao 已提交
8118
@templatedoc()
X
Xin Pan 已提交
8119
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8120
    """
G
gongweibao 已提交
8121
    ${comment}
G
fix  
gongweibao 已提交
8122 8123

    Args:
G
gongweibao 已提交
8124 8125 8126 8127
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8128 8129 8130
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8131
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8132

8133 8134 8135 8136
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8137 8138 8139
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8140
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8151
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8152 8153 8154 8155 8156
        })

    return out


G
gongweibao 已提交
8157
@templatedoc()
G
fix  
gongweibao 已提交
8158
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8159
    """
G
gongweibao 已提交
8160
    ${comment}
G
fix  
gongweibao 已提交
8161 8162

    Args:
G
gongweibao 已提交
8163 8164 8165 8166
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8167
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8168 8169

    Returns:
G
gongweibao 已提交
8170
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8171

8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8182 8183 8184
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8185
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8197
@templatedoc()
G
fix  
gongweibao 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8207
    ${comment}
G
fix  
gongweibao 已提交
8208 8209

    Args:
G
gongweibao 已提交
8210 8211
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8212
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8213 8214 8215 8216
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8217
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8218 8219

    Returns:
G
gongweibao 已提交
8220
        out (Variable): ${out_comment}
8221 8222 8223 8224 8225 8226 8227 8228

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8229 8230 8231
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8232
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8251
@templatedoc()
X
Xin Pan 已提交
8252
def sum(x):
G
fix  
gongweibao 已提交
8253
    """
G
gongweibao 已提交
8254
    ${comment}
G
fix  
gongweibao 已提交
8255 8256

    Args:
G
gongweibao 已提交
8257
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8258 8259

    Returns:
G
gongweibao 已提交
8260
        out (Variable): ${out_comment}
8261 8262 8263 8264 8265 8266

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8267 8268 8269
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8270 8271
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8272 8273 8274 8275
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8276
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8277 8278 8279 8280

    return out


G
gongweibao 已提交
8281
@templatedoc()
G
fix  
gongweibao 已提交
8282 8283
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8284
    ${comment}
G
fix  
gongweibao 已提交
8285 8286

    Args:
G
gongweibao 已提交
8287 8288 8289 8290
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8291 8292

    Returns:
G
gongweibao 已提交
8293
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8294

8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8306 8307 8308
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8309 8310
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8322
@templatedoc()
G
fix  
gongweibao 已提交
8323 8324
def shape(input):
    """
G
gongweibao 已提交
8325
    ${comment}
G
fix  
gongweibao 已提交
8326 8327

    Args:
G
gongweibao 已提交
8328
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8329 8330

    Returns:
G
gongweibao 已提交
8331
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8332

8333 8334 8335 8336 8337 8338
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8339 8340 8341
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8342 8343
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8344
    helper.append_op(
G
fix  
gongweibao 已提交
8345
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8346 8347

    return out
G
merge  
gongweibao 已提交
8348 8349


S
sneaxiy 已提交
8350 8351 8352 8353 8354 8355 8356 8357
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8358 8359
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8360
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8361 8362 8363
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8364

S
sneaxiy 已提交
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8376
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8377 8378 8379 8380 8381 8382 8383 8384
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8385
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8386
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8387 8388 8389 8390 8391 8392

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8393
    if name is None:
X
Xin Pan 已提交
8394
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8395 8396 8397
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8408
    return helper.append_activation(out)
S
sneaxiy 已提交
8409 8410


X
Xin Pan 已提交
8411
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8412 8413 8414
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8415
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8416 8417 8418
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8419
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8420 8421 8422
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8423
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8424 8425 8426
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8427
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8428 8429 8430
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8431
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8432 8433 8434
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8435
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8447 8448
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8449
        ])
M
minqiyang 已提交
8450 8451


8452
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8453 8454
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8455 8456
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8457 8458 8459

    if out is None:
        if name is None:
X
Xin Pan 已提交
8460
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8476
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8488 8489 8490 8491 8492 8493 8494 8495 8496

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8497 8498 8499 8500 8501 8502 8503
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8504
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8516 8517 8518 8519 8520 8521 8522 8523 8524

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8525 8526 8527 8528 8529 8530 8531
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8532
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8544 8545 8546 8547 8548 8549 8550 8551 8552

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8553 8554 8555 8556 8557 8558 8559
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8560
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8561 8562 8563 8564 8565 8566 8567 8568 8569 8570
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8571 8572 8573 8574 8575 8576 8577

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8578 8579 8580 8581
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8597 8598 8599 8600 8601 8602 8603

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8604 8605 8606 8607 8608
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8609 8610 8611 8612
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8636 8637 8638 8639 8640 8641 8642

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8643 8644 8645 8646 8647
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8648 8649 8650 8651
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8652 8653 8654 8655 8656 8657 8658 8659

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8678
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8731
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8732 8733 8734 8735 8736 8737 8738 8739 8740
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8741 8742
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8743 8744 8745 8746 8747 8748
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8749 8750 8751 8752
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8753 8754 8755 8756 8757 8758
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8759
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8760 8761 8762 8763 8764 8765 8766 8767 8768
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8769
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8770 8771 8772 8773 8774 8775 8776 8777
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8778
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8799
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8800 8801 8802 8803 8804 8805 8806 8807 8808 8809
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8810 8811


J
JiabinYang 已提交
8812
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8813
    """
J
JiabinYang 已提交
8814
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8815 8816 8817

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8818
    The attr blocksize indicates the input block size.
8819 8820

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8821
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8822 8823

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8824
    (but keeping all data)
J
JiabinYang 已提交
8825

J
JiabinYang 已提交
8826
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8827
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8828 8829 8830 8831 8832
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8833
    Args:
J
JiabinYang 已提交
8834
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8835
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8836 8837

    Returns:
J
JiabinYang 已提交
8838
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8839 8840

    Raises:
J
JiabinYang 已提交
8841
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8842 8843 8844 8845 8846 8847

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8848
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8849
                x=data, blocksize=2)
J
JiabinYang 已提交
8850 8851
    """

J
JiabinYang 已提交
8852
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8853

J
JiabinYang 已提交
8854 8855
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8856 8857

    if name is None:
J
JiabinYang 已提交
8858 8859
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8860 8861 8862 8863 8864
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8865
        type="space_to_depth",
J
JiabinYang 已提交
8866
        inputs={"X": x},
J
JiabinYang 已提交
8867
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8868
        outputs={"Out": out})
J
JiabinYang 已提交
8869 8870
    return out

J
JiabinYang 已提交
8871

S
sneaxiy 已提交
8872 8873
@templatedoc()
def sequence_reverse(x, name=None):
8874
    """
S
sneaxiy 已提交
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8886
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8897 8898


8899 8900 8901 8902 8903 8904
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8905

8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8925
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8938 8939


B
barrierye 已提交
8940
def similarity_focus(input, axis, indexes, name=None):
8941
    """
B
barrierye 已提交
8942
    SimilarityFocus Operator
B
barrierye 已提交
8943 8944

    Generate a similarity focus mask with the same shape of input using the following method:
H
haowang101779990 已提交
8945
    
8946 8947 8948
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8949
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8950 8951 8952 8953 8954 8955 8956
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8957
       each index.
B
barrierye 已提交
8958 8959 8960 8961
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9011
    Args:
9012
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9013
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9014
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9015
            1, 2 or 3.
B
barrierye 已提交
9016
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9017 9018

    Returns:
H
haowang101779990 已提交
9019 9020
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9021

B
barrierye 已提交
9022 9023
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9024

B
barrierye 已提交
9025
            data = fluid.layers.data(
B
barrierye 已提交
9026 9027
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9028

B
barrierye 已提交
9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9041 9042 9043 9044 9045
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9046 9047 9048 9049 9050 9051 9052
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9053 9054


M
minqiyang 已提交
9055 9056
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9057 9058
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9059 9060
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9099
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9100
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9101 9102 9103 9104 9105 9106

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9107

M
minqiyang 已提交
9108 9109 9110
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9111 9112
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9113 9114
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9115 9116 9117 9118 9119 9120 9121
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9122 9123


D
dengkaipeng 已提交
9124
@templatedoc()
9125 9126
def grid_sampler(x, grid, name=None):
    """
9127
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9128
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9129 9130 9131 9132
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9133
    interpolation value of 4 nearest corner points.
9134

H
haowang101779990 已提交
9135 9136 9137 9138
    .. code-block:: text

        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9139

H
haowang101779990 已提交
9140 9141
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9142

H
haowang101779990 已提交
9143 9144 9145
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9146

H
haowang101779990 已提交
9147 9148 9149 9150 9151 9152 9153 9154 9155
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9156

H
haowang101779990 已提交
9157 9158 9159 9160
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9161

H
haowang101779990 已提交
9162 9163 9164 9165
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9166

H
haowang101779990 已提交
9167 9168 9169 9170
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9171

H
haowang101779990 已提交
9172 9173
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9174 9175

    Args:
9176 9177 9178
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9179 9180

    Returns:
H
haowang101779990 已提交
9181
        Variable: Output of shape [N, C, H, W] data samples input X
9182 9183
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9184 9185 9186 9187 9188 9189 9190 9191
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9192

D
dengkaipeng 已提交
9193 9194 9195 9196 9197 9198 9199 9200 9201
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9202
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9203 9204
    ipts = {'X': x, 'Grid': grid}

9205
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9206 9207 9208
    return out


G
gmcather 已提交
9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9260
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9261 9262
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9263
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9264 9265

    .. math::
H
haowang101779990 已提交
9266 9267 9268
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9269 9270

    Where:
H
haowang101779990 已提交
9271 9272
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9287

G
gmcather 已提交
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9314
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9315

Q
Qiao Longfei 已提交
9316
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9317 9318 9319
    For example:

    .. math::
H
haowang101779990 已提交
9320
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9321

Q
Qiao Longfei 已提交
9322
    In this formula:
9323 9324
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9325
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9326
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9327 9328 9329
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9330 9331
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9332 9333 9334
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9335
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9336
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9337
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9338 9339 9340 9341
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9342
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9343 9344 9345 9346

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9347
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9348 9349
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9350
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9351 9352 9353 9354

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9355
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9396 9397


S
sneaxiy 已提交
9398
class PyFuncRegistry(object):
S
sneaxiy 已提交
9399 9400 9401
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9402
        if func is None or not callable(func):
S
sneaxiy 已提交
9403 9404 9405 9406
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection 
S
sneaxiy 已提交
9407 9408 9409 9410 9411 9412 9413
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9414 9415 9416 9417 9418
        '''
        Why record self here?

        1. For debug usage. Users can call 
           :code:`py_func.registered_func(idx)` method 
S
sneaxiy 已提交
9419
           to find the registered function corresponding
S
sneaxiy 已提交
9420 9421 9422 9423 9424 9425 9426 9427
           to :code:`idx`. 

        2. For increasing reference count of self. 
           It seems that to release Python object 
           whose reference count is 1 would cause
           segmentation fault error in C++ side. 
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9428
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9443 9444 9445 9446 9447 9448 9449 9450 9451
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9452

S
sneaxiy 已提交
9453 9454
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9455 9456

        ret = []
S
sneaxiy 已提交
9457 9458 9459
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9460 9461
                continue

S
sneaxiy 已提交
9462 9463
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9464

S
sneaxiy 已提交
9465 9466 9467
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9468

S
sneaxiy 已提交
9469
        return tuple(ret)
S
sneaxiy 已提交
9470 9471


S
sneaxiy 已提交
9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
    
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9485
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9486

S
sneaxiy 已提交
9487 9488
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9489 9490 9491 9492
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9493 9494 9495 9496
    This function can also be used to debug the running network. User can
    add a :code:`py_func` operator without output, and print input 
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
            should create :code:`out` beforehand. 
        backward_func (callable|None): backward Python function.
                                       None means no backward. Default None. 
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
            Variables that are not needed in :code:`backward_func` inputs. 
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
            Only useful when :code:`backward_func` is not None. Default None. 

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553

    Examples:
    
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
        >>>         name=name, dtype=dtype, shape=shape) 
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
        >>> # Here, we only use tanh to be an example to show the usage 
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
        >>> 
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
        >>>     print(x) 
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
        >>>             dtype=hidden.dtype, shape=hidden.shape)    
        >>>
        >>>         # user-defined layers with forward and backward
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden, 
        >>>             out=new_hidden, backward_func=tanh_grad, 
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9554
    """
S
sneaxiy 已提交
9555
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9556 9557 9558
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9559
        x = [x]
S
sneaxiy 已提交
9560 9561
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9562

S
sneaxiy 已提交
9563 9564 9565
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9566
        out_list = [out]
S
sneaxiy 已提交
9567
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9568
        out_list = out
S
sneaxiy 已提交
9569 9570 9571
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9572

S
sneaxiy 已提交
9573 9574
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9575
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9576 9577

    for each_out in out_list:
S
sneaxiy 已提交
9578 9579
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9580 9581
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9582

S
sneaxiy 已提交
9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9598 9599 9600 9601

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9602 9603
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9604 9605 9606
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9607
        })
S
sneaxiy 已提交
9608
    return out
S
sneaxiy 已提交
9609 9610 9611


# For debug usage
S
sneaxiy 已提交
9612 9613 9614 9615
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9668

M
minqiyang 已提交
9669

M
minqiyang 已提交
9670
def huber_loss(input, label, delta):
9671
    """
M
minqiyang 已提交
9672 9673 9674
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9675 9676 9677 9678

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9679
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9680 9681 9682 9683

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9684
        huber\_loss = 0.5 * (label - input) * (label - input)
9685 9686 9687 9688 9689 9690 9691


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9692
        delta (float): The parameter of huber loss, which controls
9693 9694 9695
                       the range of outliers

    Returns:
M
minqiyang 已提交
9696
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9697 9698 9699 9700 9701

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9702
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9703
    """
M
minqiyang 已提交
9704
    helper = LayerHelper('huber_loss', **locals())
9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
X
Xin Pan 已提交
9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759


class FC(layers.PyLayer):
    def __init__(self,
                 size,
                 param_attr=None,
                 num_flatten_dims=1,
                 dtype=core.VarDesc.VarType.FP32):
        super(FC, self).__init__()
        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._helper = LayerHelper('FC', param_attr=param_attr)

    def _build_once(self, inputs):
        input_shape = inputs[0].shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, inputs):
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": inputs[0],
                    "Y": self._w},
            outputs={"Out": tmp},
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="sum",
            inputs={"X": [tmp]},
            outputs={"Out": out},
            attrs={"use_mkldnn": False})
        return out