README_en.md 14.4 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[简体中文](README.md) | English

# PP-TinyPose

<div align="center">
  <img src="../../../docs/images/tinypose_demo.png"/>
  <center>Image Source: COCO2017</center>
</div>

## Introduction
PP-TinyPose is a real-time keypoint detection model optimized by PaddleDetecion for mobile devices, which can smoothly run multi-person pose estimation tasks on mobile devices. With the excellent self-developed lightweight detection model [PicoDet](../../picodet/README.md), we also provide a lightweight pedestrian detection model. PP-TinyPose has the following dependency requirements:
- [PaddlePaddle](https://github.com/PaddlePaddle/Paddle)>=2.2

If you want to deploy it on the mobile devives, you also need:
- [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)>=2.10


<div align="center">
  <img src="../../../docs/images/tinypose_pipeline.png" width='800'/>
</div>

## Deployment Case

- [Android Fitness Demo](https://github.com/zhiboniu/pose_demo_android) based on PP-TinyPose, which efficiently implements fitness calibration and counting.

<div align="center">
  <img src="../../../docs/images/fitness_demo.gif" width='636'/>
</div>

- Welcome to scan the QR code for quick experience.
<div align="center">
  <img src="../../../docs/images/tinypose_app.png" width='220'/>
</div>


## Model Zoo
### Keypoint Detection Model
| Model  | Input Size | AP (COCO Val) | Inference Time for Single Person (FP32)| Inference Time for Single Person(FP16) | Config | Model Weights | Deployment Model | Paddle-Lite Model(FP32) | Paddle-Lite Model(FP16)|
| :------------------------ | :-------:  | :------: | :------: |:---: | :---: | :---: | :---: | :---: | :---: |
Z
zhiboniu 已提交
40 41
| PP-TinyPose | 128*96 | 58.1 | 4.57ms | 3.27ms | [Config](./tinypose_128x96.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16_lite.tar) |
| PP-TinyPose | 256*192 | 68.8 | 14.07ms | 8.33ms | [Config](./tinypose_256x192.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16_lite.tar) |
J
JYChen 已提交
42 43 44 45

### Pedestrian Detection Model
| Model  | Input Size | mAP (COCO Val) | Average Inference Time (FP32)| Average Inference Time (FP16) | Config | Model Weights | Deployment Model | Paddle-Lite Model(FP32) | Paddle-Lite Model(FP16)|
| :------------------------ | :-------:  | :------: | :------: | :---: | :---: | :---: | :---: | :---: | :---: |
Z
zhiboniu 已提交
46 47
| PicoDet-S-Pedestrian | 192*192 | 29.0 | 4.30ms |  2.37ms | [Config](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 320*320 | 38.5 | 10.26ms |  6.30ms | [Config](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16_lite.tar) |
J
JYChen 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


**Tips**
- The keypoint detection model and pedestrian detection model are both trained on `COCO train2017` and `AI Challenger trainset`. The keypoint detection model is evaluated on `COCO person keypoints val2017`, and the pedestrian detection model is evaluated on `COCO instances val2017`.
- The AP results of keypoint detection models are based on bounding boxes in GroundTruth.
- Both keypoint detection model and pedestrian detection model are trained in a 4-GPU environment. In practice, if number of GPUs or batch size need to be changed according to the training environment, you should refer to [FAQ](../../../docs/tutorials/FAQ/README.md) to adjust the learning rate.
- The inference time is tested on a Qualcomm Snapdragon 865, with 4 threads at arm8.

### Pipeline Performance
| Model for Single-Pose | AP (COCO Val Single-Person) | Time for Single Person(FP32) |  Time for Single Person(FP16) |
| :------------------------ | :------: | :---: | :---: |
| PicoDet-S-Pedestrian-192\*192 + PP-TinyPose-128\*96 | 51.8 | 11.72 ms| 8.18 ms |
| Other opensource model-192\*192 | 22.3 | 12.0 ms| - |

| Model for Multi-Pose | AP (COCO Val Multi-Persons) | Time for Six Persons(FP32) | Time for Six Persons(FP16)|
| :------------------------ | :-------: | :---: | :---: |
| PicoDet-S-Pedestrian-320\*320 + PP-TinyPose-128\*96 | 50.3 | 44.0 ms| 32.57 ms |
| Other opensource model-256\*256 | 39.4 | 51.0 ms| - |

**Tips**
- The AP results of keypoint detection models are based on bounding boxes detected by corresponding detection model.
- In accuracy evaluation, there is no flip, and threshold of bounding boxes is set to 0.5.
- For fairness, in multi-persons test, we remove images with more than 6 people.
- The inference time is tested on a Qualcomm Snapdragon 865, with 4 threads at arm8, FP32.
- Pipeline time includes time for preprocess, inferece and postprocess.
- About the deployment and testing for other opensource model, please refer to [Here](https://github.com/zhiboniu/MoveNet-PaddleLite).
J
JYChen 已提交
74
- For more performance data in other runtime environment, please refer to [Keypoint Inference Benchmark](../KeypointBenchmark.md).
J
JYChen 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

## Model Training
In addition to `COCO`, the trainset for keypoint detection model and pedestrian detection model also includes [AI Challenger](https://arxiv.org/abs/1711.06475). Keypoints of each dataset are defined as follows:
```
COCO keypoint Description:
    0: "Nose",
    1: "Left Eye",
    2: "Right Eye",
    3: "Left Ear",
    4: "Right Ear",
    5: "Left Shoulder,
    6: "Right Shoulder",
    7: "Left Elbow",
    8: "Right Elbow",
    9: "Left Wrist",
    10: "Right Wrist",
    11: "Left Hip",
    12: "Right Hip",
    13: "Left Knee",
    14: "Right Knee",
    15: "Left Ankle",
    16: "Right Ankle"

AI Challenger Description:
    0: "Right Shoulder",
    1: "Right Elbow",
    2: "Right Wrist",
    3: "Left Shoulder",
    4: "Left Elbow",
    5: "Left Wrist",
    6: "Right Hip",
    7: "Right Knee",
    8: "Right Ankle",
    9: "Left Hip",
    10: "Left Knee",
    11: "Left Ankle",
    12: "Head top",
    13: "Neck"
```

Since the annatation format of these two datasets are different, we aligned their annotations to `COCO` format. You can download [Training List](https://bj.bcebos.com/v1/paddledet/data/keypoint/aic_coco_train_cocoformat.json) and put it at `dataset/`. To align these two datasets, we mainly did the following works:
- Align the indexes of the `AI Challenger` keypoint to be consistent with `COCO` and unify the flags whether the keypoint is labeled/visible.
- Discard the unique keypoints in `AI Challenger`. For keypoints not in this dataset but in `COCO`, set it to not labeled.
- Rearranged `image_id` and `annotation id`.

Training with merged annotation file converted to `COCO` format:
```bash
# keypoint detection model
python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/tiny_pose/tinypose_128x96.yml

# pedestrian detection model
python3 -m paddle.distributed.launch tools/train.py -c configs/picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml
```

## Model Deployment
### Deploy Inference
1. Export the trained model through the following command:
```bash
python3 tools/export_model.py -c configs/picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml --output_dir=outut_inference -o weights=output/picodet_s_192_pedestrian/model_final

python3 tools/export_model.py -c configs/keypoint/tiny_pose/tinypose_128x96.yml --output_dir=outut_inference -o weights=output/tinypose_128x96/model_final
```
The exported model looks as:
```
picodet_s_192_pedestrian
├── infer_cfg.yml
├── model.pdiparams
├── model.pdiparams.info
└── model.pdmodel
```
You can also download `Deployment Model` from `Model Zoo` directly. And obtain the deployment models of pedestrian detection model and keypoint detection model, then unzip them.

2. Python joint inference by detection and keypoint
```bash
# inference for one image
python3 deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/picodet_s_320_pedestrian --keypoint_model_dir=output_inference/tinypose_128x96 --image_file={your image file} --device=GPU

# inference for several images
python3 deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/picodet_s_320_pedestrian --keypoint_model_dir=output_inference/tinypose_128x96 --image_dir={dir of image file} --device=GPU

# inference for a video
python3 deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/picodet_s_320_pedestrian --keypoint_model_dir=output_inference/tinypose_128x96 --video_file={your video file} --device=GPU
```

3. C++ joint inference by detection and keypoint
- First, please refer to [C++ Deploy Inference](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/deploy/cpp), prepare the corresponding `paddle_inference` library and related dependencies according to your environment.
- We provide [Compile Script](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/deploy/cpp/scripts/build.sh). You can fill the location of the relevant environment variables in this script and excute it to compile the above codes. you can get an executable file. Please ensure `WITH_KEYPOINT=ON` during this process.
- After compilation, you can do inference like:
```bash
# inference for one image
./build/main --model_dir=output_inference/picodet_s_320_pedestrian --model_dir_keypoint=output_inference/tinypose_128x96 --image_file={your image file} --device=GPU

# inference for several images
./build/main --model_dir=output_inference/picodet_s_320_pedestrian --model_dir_keypoint=output_inference/tinypose_128x96 --image_dir={dir of image file} --device=GPU

# inference for a video
./build/main --model_dir=output_inference/picodet_s_320_pedestrian --model_dir_keypoint=output_inference/tinypose_128x96 --video_file={your video file} --device=GPU
```

### Deployment on Mobile Devices
#### Deploy directly using models we provide
1. Download `Lite Model` from `Model Zoo` directly. And get the `.nb` format files of pedestrian detection model and keypoint detection model.
2. Prepare environment for Paddle-Lite, you can obtain precompiled libraries from [PaddleLite Precompiled Libraries](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html). If FP16 is needed, you should download [Precompiled Libraries for FP16](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8_clang_c++_static_with_extra_with_cv_with_fp16.tiny_publish_427e46.zip).
3. Compile the code to run models. The detail can be seen in [Paddle-Lite Deployment on Mobile Devices](../../../deploy/lite/README.md).

#### Deployment self-trained models on Mobile Devices
If you want to deploy self-trained models, you can refer to the following steps:
1. Export the trained model
```bash
python3 tools/export_model.py -c configs/picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml --output_dir=outut_inference -o weights=output/picodet_s_192_pedestrian/model_final TestReader.fuse_normalize=true

python3 tools/export_model.py -c configs/keypoint/tiny_pose/tinypose_128x96.yml --output_dir=outut_inference -o weights=output/tinypose_128x96/model_final TestReader.fuse_normalize=true
```
2. Convert to Lite Model(rely on [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite))

- Install Paddle-Lite:
```bash
pip install paddlelite
```
- Run the following commands to obtain `.nb` format models of Paddle-Lite:
```
# 1. Convert pedestrian detection model
# FP32
paddle_lite_opt --model_dir=inference_model/picodet_s_192_pedestrian --valid_targets=arm --optimize_out=picodet_s_192_pedestrian_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/picodet_s_192_pedestrian --valid_targets=arm --optimize_out=picodet_s_192_pedestrian_fp16 --enable_fp16=true

# 2. keypoint detection model
# FP32
paddle_lite_opt --model_dir=inference_model/tinypose_128x96 --valid_targets=arm --optimize_out=tinypose_128x96_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/tinypose_128x96 --valid_targets=arm --optimize_out=tinypose_128x96_fp16 --enable_fp16=true
```

3. Compile the code to run models. The detail can be seen in [Paddle-Lite Deployment on Mobile Devices](../../../deploy/lite/README.md).

We provide [Example Code](../../../deploy/lite/) including data preprocessing, inferece and postpreocess. You can modify the codes according to your actual needs.

**Note:**
- Add `TestReader.fuse_normalize=true` during the step of exporting model. The Normalize operation for the image will be executed in the model, which can achieve acceleration.
- With FP16, we can get a faster inference speed. If you want to deploy the FP16 model, in addition to the model conversion step, you also need to compile the Paddle-Lite prediction library that supports FP16. The detail is in [Paddle Lite Deployment on ARM CPU](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/arm_cpu.html).

## Optimization Strategies
TinyPose adopts the following strategies to balance the speed and accuracy of the model:
- Lightweight backbone network for pose estimation, [wider naive Lite-HRNet](https://arxiv.org/abs/2104.06403).
- Smaller input size.
- Distribution-Aware coordinate Representation of Keypoints ([DARK](https://arxiv.org/abs/1910.06278)), which can improve the accuracy of the model under the low-resolution heatmap.
- Unbiased Data Processing ([UDP](https://arxiv.org/abs/1911.07524)).
- Augmentation by Information Dropping ([AID](https://arxiv.org/abs/2008.07139v2)).
- FP16 inference.