test_ops.py 21.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

import unittest
import numpy as np

import paddle

import ppdet.modeling.ops as ops
from ppdet.modeling.tests.test_base import LayerTest


def make_rois(h, w, rois_num, output_size):
    rois = np.zeros((0, 4)).astype('float32')
    for roi_num in rois_num:
        roi = np.zeros((roi_num, 4)).astype('float32')
        roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
        roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
        roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
        roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
        rois = np.vstack((rois, roi))
    return rois


def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


class TestDistributeFpnProposals(LayerTest):
    def test_distribute_fpn_proposals(self):
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = paddle.static.data(
                name='rois', shape=[10, 4], dtype='float32')
            rois_num = paddle.static.data(
                name='rois_num', shape=[None], dtype='int32')
            multi_rois, restore_ind, rois_num_per_level = ops.distribute_fpn_proposals(
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np,
                      'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True)
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
W
wangguanzhong 已提交
80 81
            rois_dy = paddle.to_tensor(rois_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = ops.distribute_fpn_proposals(
                fpn_rois=rois_dy,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num_dy)
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
            self.assertTrue(np.array_equal(res_stat, res_dy))

    def test_distribute_fpn_proposals_error(self):
        with self.static_graph():
            fpn_rois = paddle.static.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
                ops.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)

112 113
        paddle.disable_static()

Q
qingqing01 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

class TestROIAlign(LayerTest):
    def test_roi_align(self):
        b, c, h, w = 2, 12, 20, 20
        inputs_np = np.random.rand(b, c, h, w).astype('float32')
        rois_num = [4, 6]
        output_size = (7, 7)
        rois_np = make_rois(h, w, rois_num, output_size)
        rois_num_np = np.array(rois_num).astype('int32')
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[b, c, h, w], dtype='float32')
            rois = paddle.static.data(
                name='rois', shape=[10, 4], dtype='float32')
            rois_num = paddle.static.data(
                name='rois_num', shape=[None], dtype='int32')

131 132 133 134 135
            output = paddle.vision.ops.roi_align(
                x=inputs,
                boxes=rois,
                boxes_num=rois_num,
                output_size=output_size)
Q
qingqing01 已提交
136 137 138 139 140 141 142 143 144 145
            output_np, = self.get_static_graph_result(
                feed={
                    'inputs': inputs_np,
                    'rois': rois_np,
                    'rois_num': rois_num_np
                },
                fetch_list=output,
                with_lod=False)

        with self.dynamic_graph():
W
wangguanzhong 已提交
146 147 148
            inputs_dy = paddle.to_tensor(inputs_np)
            rois_dy = paddle.to_tensor(rois_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
149

150 151 152 153 154
            output_dy = paddle.vision.ops.roi_align(
                x=inputs_dy,
                boxes=rois_dy,
                boxes_num=rois_num_dy,
                output_size=output_size)
Q
qingqing01 已提交
155 156 157 158 159 160 161 162 163 164 165 166
            output_dy_np = output_dy.numpy()

        self.assertTrue(np.array_equal(output_np, output_dy_np))

    def test_roi_align_error(self):
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[2, 12, 20, 20], dtype='float32')
            rois = paddle.static.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
167
                paddle.vision.ops.roi_align,
Q
qingqing01 已提交
168 169 170 171
                input=inputs,
                rois=rois,
                output_size=(7, 7))

172 173
        paddle.disable_static()

Q
qingqing01 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

class TestROIPool(LayerTest):
    def test_roi_pool(self):
        b, c, h, w = 2, 12, 20, 20
        inputs_np = np.random.rand(b, c, h, w).astype('float32')
        rois_num = [4, 6]
        output_size = (7, 7)
        rois_np = make_rois(h, w, rois_num, output_size)
        rois_num_np = np.array(rois_num).astype('int32')
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[b, c, h, w], dtype='float32')
            rois = paddle.static.data(
                name='rois', shape=[10, 4], dtype='float32')
            rois_num = paddle.static.data(
                name='rois_num', shape=[None], dtype='int32')

191 192 193 194 195
            output = paddle.vision.ops.roi_pool(
                x=inputs,
                boxes=rois,
                boxes_num=rois_num,
                output_size=output_size)
Q
qingqing01 已提交
196 197 198 199 200 201 202 203 204 205
            output_np, = self.get_static_graph_result(
                feed={
                    'inputs': inputs_np,
                    'rois': rois_np,
                    'rois_num': rois_num_np
                },
                fetch_list=[output],
                with_lod=False)

        with self.dynamic_graph():
W
wangguanzhong 已提交
206 207 208
            inputs_dy = paddle.to_tensor(inputs_np)
            rois_dy = paddle.to_tensor(rois_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
209

210 211 212 213 214
            output_dy = paddle.vision.ops.roi_pool(
                x=inputs_dy,
                boxes=rois_dy,
                boxes_num=rois_num_dy,
                output_size=output_size)
Q
qingqing01 已提交
215 216 217 218 219 220 221 222 223 224 225 226
            output_dy_np = output_dy.numpy()

        self.assertTrue(np.array_equal(output_np, output_dy_np))

    def test_roi_pool_error(self):
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[2, 12, 20, 20], dtype='float32')
            rois = paddle.static.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
227
                paddle.vision.ops.roi_pool,
Q
qingqing01 已提交
228 229 230 231
                input=inputs,
                rois=rois,
                output_size=(7, 7))

232 233
        paddle.disable_static()

Q
qingqing01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

class TestPriorBox(LayerTest):
    def test_prior_box(self):
        input_np = np.random.rand(2, 10, 32, 32).astype('float32')
        image_np = np.random.rand(2, 10, 40, 40).astype('float32')
        min_sizes = [2, 4]
        with self.static_graph():
            input = paddle.static.data(
                name='input', shape=[2, 10, 32, 32], dtype='float32')
            image = paddle.static.data(
                name='image', shape=[2, 10, 40, 40], dtype='float32')

            box, var = ops.prior_box(
                input=input,
                image=image,
                min_sizes=min_sizes,
                clip=True,
                flip=True)
            box_np, var_np = self.get_static_graph_result(
                feed={
                    'input': input_np,
                    'image': image_np,
                },
                fetch_list=[box, var],
                with_lod=False)

        with self.dynamic_graph():
W
wangguanzhong 已提交
261 262
            inputs_dy = paddle.to_tensor(input_np)
            image_dy = paddle.to_tensor(image_np)
Q
qingqing01 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

            box_dy, var_dy = ops.prior_box(
                input=inputs_dy,
                image=image_dy,
                min_sizes=min_sizes,
                clip=True,
                flip=True)
            box_dy_np = box_dy.numpy()
            var_dy_np = var_dy.numpy()

        self.assertTrue(np.array_equal(box_np, box_dy_np))
        self.assertTrue(np.array_equal(var_np, var_dy_np))

    def test_prior_box_error(self):
        with self.static_graph():
            input = paddle.static.data(
                name='input', shape=[2, 10, 32, 32], dtype='int32')
            image = paddle.static.data(
                name='image', shape=[2, 10, 40, 40], dtype='int32')
            self.assertRaises(
                TypeError,
                ops.prior_box,
                input=input,
                image=image,
                min_sizes=[2, 4],
                clip=True,
                flip=True)

291
        paddle.disable_static()
Q
qingqing01 已提交
292 293 294 295


class TestMulticlassNms(LayerTest):
    def test_multiclass_nms(self):
W
wangguanzhong 已提交
296 297 298
        boxes_np = np.random.rand(10, 81, 4).astype('float32')
        scores_np = np.random.rand(10, 81).astype('float32')
        rois_num_np = np.array([2, 8]).astype('int32')
Q
qingqing01 已提交
299 300
        with self.static_graph():
            boxes = paddle.static.data(
W
wangguanzhong 已提交
301 302 303 304
                name='bboxes',
                shape=[None, 81, 4],
                dtype='float32',
                lod_level=1)
Q
qingqing01 已提交
305
            scores = paddle.static.data(
W
wangguanzhong 已提交
306
                name='scores', shape=[None, 81], dtype='float32', lod_level=1)
Q
qingqing01 已提交
307
            rois_num = paddle.static.data(
W
wangguanzhong 已提交
308
                name='rois_num', shape=[None], dtype='int32')
Q
qingqing01 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

            output = ops.multiclass_nms(
                bboxes=boxes,
                scores=scores,
                background_label=0,
                score_threshold=0.5,
                nms_top_k=400,
                nms_threshold=0.3,
                keep_top_k=200,
                normalized=False,
                return_index=True,
                rois_num=rois_num)
            out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
                feed={
                    'bboxes': boxes_np,
                    'scores': scores_np,
                    'rois_num': rois_num_np
                },
                fetch_list=output,
W
wangguanzhong 已提交
328 329 330 331
                with_lod=True)
            out_np = np.array(out_np)
            index_np = np.array(index_np)
            nms_rois_num_np = np.array(nms_rois_num_np)
Q
qingqing01 已提交
332 333

        with self.dynamic_graph():
W
wangguanzhong 已提交
334 335 336
            boxes_dy = paddle.to_tensor(boxes_np)
            scores_dy = paddle.to_tensor(scores_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

            out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
                bboxes=boxes_dy,
                scores=scores_dy,
                background_label=0,
                score_threshold=0.5,
                nms_top_k=400,
                nms_threshold=0.3,
                keep_top_k=200,
                normalized=False,
                return_index=True,
                rois_num=rois_num_dy)
            out_dy_np = out_dy.numpy()
            index_dy_np = index_dy.numpy()
            nms_rois_num_dy_np = nms_rois_num_dy.numpy()

        self.assertTrue(np.array_equal(out_np, out_dy_np))
        self.assertTrue(np.array_equal(index_np, index_dy_np))
        self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))

    def test_multiclass_nms_error(self):
        with self.static_graph():
            boxes = paddle.static.data(
                name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
            scores = paddle.static.data(
                name='scores', shape=[81], dtype='float32', lod_level=1)
            rois_num = paddle.static.data(
                name='rois_num', shape=[40, 41], dtype='int32')
            self.assertRaises(
                TypeError,
                ops.multiclass_nms,
                boxes=boxes,
                scores=scores,
                background_label=0,
                score_threshold=0.5,
                nms_top_k=400,
                nms_threshold=0.3,
                keep_top_k=200,
                normalized=False,
                return_index=True,
                rois_num=rois_num)


class TestMatrixNMS(LayerTest):
    def test_matrix_nms(self):
        N, M, C = 7, 1200, 21
        BOX_SIZE = 4
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = 0.01
        post_threshold = 0.

        scores_np = np.random.random((N * M, C)).astype('float32')
        scores_np = np.apply_along_axis(softmax, 1, scores_np)
        scores_np = np.reshape(scores_np, (N, M, C))
        scores_np = np.transpose(scores_np, (0, 2, 1))

        boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
        boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5

        with self.static_graph():
            boxes = paddle.static.data(
                name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
            scores = paddle.static.data(
                name='scores', shape=[N, C, M], dtype='float32')
            out, index, _ = ops.matrix_nms(
                bboxes=boxes,
                scores=scores,
                score_threshold=score_threshold,
                post_threshold=post_threshold,
                nms_top_k=nms_top_k,
                keep_top_k=keep_top_k,
                return_index=True)
            out_np, index_np = self.get_static_graph_result(
                feed={'boxes': boxes_np,
                      'scores': scores_np},
                fetch_list=[out, index],
                with_lod=True)

        with self.dynamic_graph():
W
wangguanzhong 已提交
418 419
            boxes_dy = paddle.to_tensor(boxes_np)
            scores_dy = paddle.to_tensor(scores_np)
Q
qingqing01 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

            out_dy, index_dy, _ = ops.matrix_nms(
                bboxes=boxes_dy,
                scores=scores_dy,
                score_threshold=score_threshold,
                post_threshold=post_threshold,
                nms_top_k=nms_top_k,
                keep_top_k=keep_top_k,
                return_index=True)
            out_dy_np = out_dy.numpy()
            index_dy_np = index_dy.numpy()

        self.assertTrue(np.array_equal(out_np, out_dy_np))
        self.assertTrue(np.array_equal(index_np, index_dy_np))

    def test_matrix_nms_error(self):
        with self.static_graph():
            bboxes = paddle.static.data(
                name='bboxes', shape=[7, 1200, 4], dtype='float32')
            scores = paddle.static.data(
                name='data_error', shape=[7, 21, 1200], dtype='int32')
            self.assertRaises(
                TypeError,
                ops.matrix_nms,
                bboxes=bboxes,
                scores=scores,
                score_threshold=0.01,
                post_threshold=0.,
                nms_top_k=400,
                keep_top_k=200,
                return_index=True)

452 453
        paddle.disable_static()

Q
qingqing01 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

class TestBoxCoder(LayerTest):
    def test_box_coder(self):

        prior_box_np = np.random.random((81, 4)).astype('float32')
        prior_box_var_np = np.random.random((81, 4)).astype('float32')
        target_box_np = np.random.random((20, 81, 4)).astype('float32')

        # static
        with self.static_graph():
            prior_box = paddle.static.data(
                name='prior_box', shape=[81, 4], dtype='float32')
            prior_box_var = paddle.static.data(
                name='prior_box_var', shape=[81, 4], dtype='float32')
            target_box = paddle.static.data(
                name='target_box', shape=[20, 81, 4], dtype='float32')

            boxes = ops.box_coder(
                prior_box=prior_box,
                prior_box_var=prior_box_var,
                target_box=target_box,
                code_type="decode_center_size",
                box_normalized=False)

            boxes_np, = self.get_static_graph_result(
                feed={
                    'prior_box': prior_box_np,
                    'prior_box_var': prior_box_var_np,
                    'target_box': target_box_np,
                },
                fetch_list=[boxes],
                with_lod=False)

        # dygraph
        with self.dynamic_graph():
W
wangguanzhong 已提交
489 490 491
            prior_box_dy = paddle.to_tensor(prior_box_np)
            prior_box_var_dy = paddle.to_tensor(prior_box_var_np)
            target_box_dy = paddle.to_tensor(target_box_np)
Q
qingqing01 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

            boxes_dy = ops.box_coder(
                prior_box=prior_box_dy,
                prior_box_var=prior_box_var_dy,
                target_box=target_box_dy,
                code_type="decode_center_size",
                box_normalized=False)

            boxes_dy_np = boxes_dy.numpy()

            self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))

    def test_box_coder_error(self):
        with self.static_graph():
            prior_box = paddle.static.data(
                name='prior_box', shape=[81, 4], dtype='int32')
            prior_box_var = paddle.static.data(
                name='prior_box_var', shape=[81, 4], dtype='float32')
            target_box = paddle.static.data(
                name='target_box', shape=[20, 81, 4], dtype='float32')

            self.assertRaises(TypeError, ops.box_coder, prior_box,
                              prior_box_var, target_box)

516 517
        paddle.disable_static()

Q
qingqing01 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

class TestGenerateProposals(LayerTest):
    def test_generate_proposals(self):
        scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
        bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
        im_shape_np = np.array([[8, 8], [6, 6]]).astype('float32')
        anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
                                [4, 4, 3, 4]).astype('float32')
        variances_np = np.ones((4, 4, 3, 4)).astype('float32')

        with self.static_graph():
            scores = paddle.static.data(
                name='scores', shape=[2, 3, 4, 4], dtype='float32')
            bbox_deltas = paddle.static.data(
                name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32')
            im_shape = paddle.static.data(
                name='im_shape', shape=[2, 2], dtype='float32')
            anchors = paddle.static.data(
                name='anchors', shape=[4, 4, 3, 4], dtype='float32')
            variances = paddle.static.data(
                name='var', shape=[4, 4, 3, 4], dtype='float32')
            rois, roi_probs, rois_num = ops.generate_proposals(
                scores,
                bbox_deltas,
                im_shape,
                anchors,
                variances,
                pre_nms_top_n=10,
                post_nms_top_n=5,
                return_rois_num=True)
            rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result(
                feed={
                    'scores': scores_np,
                    'bbox_deltas': bbox_deltas_np,
                    'im_shape': im_shape_np,
                    'anchors': anchors_np,
                    'var': variances_np
                },
                fetch_list=[rois, roi_probs, rois_num],
                with_lod=True)

        with self.dynamic_graph():
W
wangguanzhong 已提交
560 561 562 563 564
            scores_dy = paddle.to_tensor(scores_np)
            bbox_deltas_dy = paddle.to_tensor(bbox_deltas_np)
            im_shape_dy = paddle.to_tensor(im_shape_np)
            anchors_dy = paddle.to_tensor(anchors_np)
            variances_dy = paddle.to_tensor(variances_np)
Q
qingqing01 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
            rois, roi_probs, rois_num = ops.generate_proposals(
                scores_dy,
                bbox_deltas_dy,
                im_shape_dy,
                anchors_dy,
                variances_dy,
                pre_nms_top_n=10,
                post_nms_top_n=5,
                return_rois_num=True)
            rois_dy = rois.numpy()
            roi_probs_dy = roi_probs.numpy()
            rois_num_dy = rois_num.numpy()

        self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy))
        self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy))
        self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy))


if __name__ == '__main__':
    unittest.main()