proposal_generator.py 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle

from ppdet.core.workspace import register, serializable
from .. import ops


@register
@serializable
class ProposalGenerator(object):
W
wangguanzhong 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    """
    Proposal generation module

    For more details, please refer to the document of generate_proposals 
    in ppdet/modeing/ops.py

    Args:
        pre_nms_top_n (int): Number of total bboxes to be kept per
            image before NMS. default 6000
        post_nms_top_n (int): Number of total bboxes to be kept per
            image after NMS. default 1000
        nms_thresh (float): Threshold in NMS. default 0.5
        min_size (flaot): Remove predicted boxes with either height or
             width < min_size. default 0.1
        eta (float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
             `adaptive_threshold = adaptive_threshold * eta` in each iteration.
             default 1.
        topk_after_collect (bool): whether to adopt topk after batch 
             collection. If topk_after_collect is true, box filter will not be 
             used after NMS at each image in proposal generation. default false
    """

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def __init__(self,
                 pre_nms_top_n=12000,
                 post_nms_top_n=2000,
                 nms_thresh=.5,
                 min_size=.1,
                 eta=1.,
                 topk_after_collect=False):
        super(ProposalGenerator, self).__init__()
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.nms_thresh = nms_thresh
        self.min_size = min_size
        self.eta = eta
        self.topk_after_collect = topk_after_collect

    def __call__(self, scores, bbox_deltas, anchors, im_shape):

        top_n = self.pre_nms_top_n if self.topk_after_collect else self.post_nms_top_n
        variances = paddle.ones_like(anchors)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        if hasattr(paddle.vision.ops, "generate_proposals"):
            rpn_rois, rpn_rois_prob, rpn_rois_num = paddle.vision.ops.generate_proposals(
                scores,
                bbox_deltas,
                im_shape,
                anchors,
                variances,
                pre_nms_top_n=self.pre_nms_top_n,
                post_nms_top_n=top_n,
                nms_thresh=self.nms_thresh,
                min_size=self.min_size,
                eta=self.eta,
                return_rois_num=True)
        else:
            rpn_rois, rpn_rois_prob, rpn_rois_num = ops.generate_proposals(
                scores,
                bbox_deltas,
                im_shape,
                anchors,
                variances,
                pre_nms_top_n=self.pre_nms_top_n,
                post_nms_top_n=top_n,
                nms_thresh=self.nms_thresh,
                min_size=self.min_size,
                eta=self.eta,
                return_rois_num=True)

92
        return rpn_rois, rpn_rois_prob, rpn_rois_num, self.post_nms_top_n