yolov3_loss_op.cc 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ObjectnessMask"),
        "Output(ObjectnessMask) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
                   "Output(GTMatchMask) of Yolov3LossOp should not be null.");
37 38

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
39 40
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
41
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
42
    int anchor_num = anchors.size() / 2;
43 44
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
45
    auto class_num = ctx->Attrs().Get<int>("class_num");
46

D
dengkaipeng 已提交
47 48 49
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
50 51 52 53
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
D
dengkaipeng 已提交
54 55 56 57
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
D
dengkaipeng 已提交
58
                      "Input(GTLabel) should be a 2-D tensor");
D
dengkaipeng 已提交
59 60 61 62
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
63 64 65 66
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
67 68 69 70 71
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
          "Attr(anchor_mask) should not crossover Attr(anchors).");
    }
72 73 74
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

75
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
76
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
77 78 79 80 81 82

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
    ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
    ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
83 84 85 86 87
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
88 89
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
90 91 92 93 94 95 96
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
97
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
98 99 100
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
101
             "keys of each anchor box");
102 103 104 105
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
106 107 108 109 110 111 112
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
113
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
114
             "box class id.");
D
dengkaipeng 已提交
115 116
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
117
              "This is a 1-D tensor with shape of [N]");
118 119 120 121 122 123
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
124
              "This is an intermediate tensor with shape of [N, B], "
125 126 127
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
128 129

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
130 131
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
132 133 134 135 136 137
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
138
    AddAttr<int>("downsample_ratio",
139 140 141 142
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
143
    AddAttr<float>("ignore_thresh",
144 145
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
146 147 148
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
         second dimention(the channel dimention), C should be S * (class_num + 5),
         class_num is the box categoriy number of source dataset(such as coco), 
         so in the second dimention, stores 4 box location coordinates x, y, w, h 
         and confidence score of the box and class one-hot key of each anchor box.

         While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
         correspnd to:

         $$
         b_x = \sigma(t_x) + c_x
         b_y = \sigma(t_y) + c_y
         b_w = p_w e^{t_w}
         b_h = p_h e^{t_h}
         $$

         While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
         is specified by anchors.

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
         the max IoU should be 1, and if the anchor box has IoU bigger then ignore 
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
D
dengkaipeng 已提交
178
         confidence score loss, and classification loss. The L2 loss is used for 
179 180 181
         box coordinates (w, h), and sigmoid cross entropy loss is used for box 
         coordinates (x, y), confidence score loss and classification loss.

182 183 184 185 186
         Each groud truth box find a best matching anchor box in all anchors, 
         prediction of this anchor box will incur all three parts of losses, and
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

187 188 189 190 191 192 193
         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
         calculated as follow.

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
194 195 196 197

         Final loss will be represented as follow.

         $$
198 199
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
200
         $$
201 202 203 204 205 206 207 208 209
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
210 211
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
212 213 214 215 216 217
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

218
 protected:
219 220
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
221 222
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
223 224 225
  }
};

226 227 228 229 230 231 232 233 234 235
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
236
    op->SetInput("GTLabel", Input("GTLabel"));
237
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
238 239
    op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", Output("GTMatchMask"));
240 241 242 243 244

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
245
    op->SetOutput(framework::GradVarName("GTLabel"), {});
246 247 248 249
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

250 251 252 253 254
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
255
                  ops::Yolov3LossGradMaker);
256
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
257 258 259 260
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);