target_layer.py 15.1 KB
Newer Older
C
cnn 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
C
cnn 已提交
14
import sys
15 16
import paddle
from ppdet.core.workspace import register, serializable
G
Guanghua Yu 已提交
17 18

from .target import rpn_anchor_target, generate_proposal_target, generate_mask_target, libra_generate_proposal_target
C
cnn 已提交
19 20
from ppdet.modeling import bbox_utils
import numpy as np
21 22 23 24 25


@register
@serializable
class RPNTargetAssign(object):
W
wangguanzhong 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    """
    RPN targets assignment module

    The assignment consists of three steps:
        1. Match anchor and ground-truth box, label the anchor with foreground
           or background sample
        2. Sample anchors to keep the properly ratio between foreground and 
           background
        3. Generate the targets for classification and regression branch


    Args:
        batch_size_per_im (int): Total number of RPN samples per image. 
            default 256
        fg_fraction (float): Fraction of anchors that is labeled
            foreground, default 0.5
        positive_overlap (float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be 
            a foreground sample. default 0.7
        negative_overlap (float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be 
            a background sample. default 0.3
        use_random (bool): Use random sampling to choose foreground and 
            background boxes, default true.
    """

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def __init__(self,
                 batch_size_per_im=256,
                 fg_fraction=0.5,
                 positive_overlap=0.7,
                 negative_overlap=0.3,
                 use_random=True):
        super(RPNTargetAssign, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap
        self.use_random = use_random

    def __call__(self, inputs, anchors):
        """
        inputs: ground-truth instances.
        anchor_box (Tensor): [num_anchors, 4], num_anchors are all anchors in all feature maps.
        """
        gt_boxes = inputs['gt_bbox']
71
        batch_size = len(gt_boxes)
72 73 74 75 76 77 78 79 80 81 82 83
        tgt_labels, tgt_bboxes, tgt_deltas = rpn_anchor_target(
            anchors, gt_boxes, self.batch_size_per_im, self.positive_overlap,
            self.negative_overlap, self.fg_fraction, self.use_random,
            batch_size)
        norm = self.batch_size_per_im * batch_size

        return tgt_labels, tgt_bboxes, tgt_deltas, norm


@register
class BBoxAssigner(object):
    __shared__ = ['num_classes']
W
wangguanzhong 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    """
    RCNN targets assignment module

    The assignment consists of three steps:
        1. Match RoIs and ground-truth box, label the RoIs with foreground
           or background sample
        2. Sample anchors to keep the properly ratio between foreground and 
           background
        3. Generate the targets for classification and regression branch

    Args:
        batch_size_per_im (int): Total number of RoIs per image. 
            default 512 
        fg_fraction (float): Fraction of RoIs that is labeled
            foreground, default 0.25
G
Guanghua Yu 已提交
99 100
        fg_thresh (float): Minimum overlap required between a RoI
            and ground-truth box for the (roi, gt box) pair to be
W
wangguanzhong 已提交
101
            a foreground sample. default 0.5
G
Guanghua Yu 已提交
102 103
        bg_thresh (float): Maximum overlap allowed between a RoI
            and ground-truth box for the (roi, gt box) pair to be
W
wangguanzhong 已提交
104
            a background sample. default 0.5
G
Guanghua Yu 已提交
105
        use_random (bool): Use random sampling to choose foreground and
W
wangguanzhong 已提交
106
            background boxes, default true
G
Guanghua Yu 已提交
107
        cascade_iou (list[iou]): The list of overlap to select foreground and
W
wangguanzhong 已提交
108 109 110
            background of each stage, which is only used In Cascade RCNN.
        num_classes (int): The number of class.
    """
111 112 113 114

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
W
wangguanzhong 已提交
115 116
                 fg_thresh=.5,
                 bg_thresh=.5,
117
                 use_random=True,
W
wangguanzhong 已提交
118
                 cascade_iou=[0.5, 0.6, 0.7],
119 120 121 122 123 124 125
                 num_classes=80):
        super(BBoxAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh = bg_thresh
        self.use_random = use_random
W
wangguanzhong 已提交
126
        self.cascade_iou = cascade_iou
127 128 129 130 131 132 133
        self.num_classes = num_classes

    def __call__(self,
                 rpn_rois,
                 rpn_rois_num,
                 inputs,
                 stage=0,
W
wangguanzhong 已提交
134
                 is_cascade=False):
135 136 137
        gt_classes = inputs['gt_class']
        gt_boxes = inputs['gt_bbox']
        # rois, tgt_labels, tgt_bboxes, tgt_gt_inds
W
wangguanzhong 已提交
138
        # new_rois_num
139 140
        outs = generate_proposal_target(
            rpn_rois, gt_classes, gt_boxes, self.batch_size_per_im,
W
wangguanzhong 已提交
141 142
            self.fg_fraction, self.fg_thresh, self.bg_thresh, self.num_classes,
            self.use_random, is_cascade, self.cascade_iou[stage])
143
        rois = outs[0]
W
wangguanzhong 已提交
144
        rois_num = outs[-1]
145 146
        # tgt_labels, tgt_bboxes, tgt_gt_inds
        targets = outs[1:4]
W
wangguanzhong 已提交
147
        return rois, rois_num, targets
148 149


G
Guanghua Yu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
@register
class BBoxLibraAssigner(object):
    __shared__ = ['num_classes']
    """
    Libra-RCNN targets assignment module

    The assignment consists of three steps:
        1. Match RoIs and ground-truth box, label the RoIs with foreground
           or background sample
        2. Sample anchors to keep the properly ratio between foreground and
           background
        3. Generate the targets for classification and regression branch

    Args:
        batch_size_per_im (int): Total number of RoIs per image.
            default 512
        fg_fraction (float): Fraction of RoIs that is labeled
            foreground, default 0.25
        fg_thresh (float): Minimum overlap required between a RoI
            and ground-truth box for the (roi, gt box) pair to be
            a foreground sample. default 0.5
        bg_thresh (float): Maximum overlap allowed between a RoI
            and ground-truth box for the (roi, gt box) pair to be
            a background sample. default 0.5
        use_random (bool): Use random sampling to choose foreground and
            background boxes, default true
        cascade_iou (list[iou]): The list of overlap to select foreground and
            background of each stage, which is only used In Cascade RCNN.
        num_classes (int): The number of class.
        num_bins (int): The number of libra_sample.
    """

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
                 fg_thresh=.5,
                 bg_thresh=.5,
                 use_random=True,
                 cascade_iou=[0.5, 0.6, 0.7],
                 num_classes=80,
                 num_bins=3):
        super(BBoxLibraAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh = bg_thresh
        self.use_random = use_random
        self.cascade_iou = cascade_iou
        self.num_classes = num_classes
        self.num_bins = num_bins

    def __call__(self,
                 rpn_rois,
                 rpn_rois_num,
                 inputs,
                 stage=0,
                 is_cascade=False):
        gt_classes = inputs['gt_class']
        gt_boxes = inputs['gt_bbox']
        # rois, tgt_labels, tgt_bboxes, tgt_gt_inds
        outs = libra_generate_proposal_target(
            rpn_rois, gt_classes, gt_boxes, self.batch_size_per_im,
            self.fg_fraction, self.fg_thresh, self.bg_thresh, self.num_classes,
            self.use_random, is_cascade, self.cascade_iou[stage], self.num_bins)
        rois = outs[0]
        rois_num = outs[-1]
        # tgt_labels, tgt_bboxes, tgt_gt_inds
        targets = outs[1:4]
        return rois, rois_num, targets


221 222 223 224
@register
@serializable
class MaskAssigner(object):
    __shared__ = ['num_classes', 'mask_resolution']
W
wangguanzhong 已提交
225 226 227 228 229 230 231 232 233 234 235 236
    """
    Mask targets assignment module

    The assignment consists of three steps:
        1. Select RoIs labels with foreground.
        2. Encode the RoIs and corresponding gt polygons to generate 
           mask target

    Args:
        num_classes (int): The number of class
        mask_resolution (int): The resolution of mask target, default 14
    """
237 238 239 240 241 242 243 244 245 246 247 248 249 250

    def __init__(self, num_classes=80, mask_resolution=14):
        super(MaskAssigner, self).__init__()
        self.num_classes = num_classes
        self.mask_resolution = mask_resolution

    def __call__(self, rois, tgt_labels, tgt_gt_inds, inputs):
        gt_segms = inputs['gt_poly']

        outs = generate_mask_target(gt_segms, rois, tgt_labels, tgt_gt_inds,
                                    self.num_classes, self.mask_resolution)

        # mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights
        return outs
C
cnn 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417


@register
class RBoxAssigner(object):
    """
    assigner of rbox
    Args:
        pos_iou_thr (float): threshold of pos samples
        neg_iou_thr (float): threshold of neg samples
        min_iou_thr (float): the min threshold of samples
        ignore_iof_thr (int): the ignored threshold
    """

    def __init__(self,
                 pos_iou_thr=0.5,
                 neg_iou_thr=0.4,
                 min_iou_thr=0.0,
                 ignore_iof_thr=-2):
        super(RBoxAssigner, self).__init__()

        self.pos_iou_thr = pos_iou_thr
        self.neg_iou_thr = neg_iou_thr
        self.min_iou_thr = min_iou_thr
        self.ignore_iof_thr = ignore_iof_thr

    def anchor_valid(self, anchors):
        """

        Args:
            anchor: M x 4

        Returns:

        """
        if anchors.ndim == 3:
            anchors = anchors.reshape(-1, anchor.shape[-1])
        assert anchors.ndim == 2
        anchor_num = anchors.shape[0]
        anchor_valid = np.ones((anchor_num), np.uint8)
        anchor_inds = np.arange(anchor_num)
        return anchor_inds

    def assign_anchor(self,
                      anchors,
                      gt_bboxes,
                      gt_lables,
                      pos_iou_thr,
                      neg_iou_thr,
                      min_iou_thr=0.0,
                      ignore_iof_thr=-2):
        """

        Args:
            anchors:
            gt_bboxes:[M, 5] rc,yc,w,h,angle
            gt_lables:

        Returns:

        """
        assert anchors.shape[1] == 4 or anchors.shape[1] == 5
        assert gt_bboxes.shape[1] == 4 or gt_bboxes.shape[1] == 5
        anchors_xc_yc = anchors
        gt_bboxes_xc_yc = gt_bboxes

        # calc rbox iou
        anchors_xc_yc = anchors_xc_yc.astype(np.float32)
        gt_bboxes_xc_yc = gt_bboxes_xc_yc.astype(np.float32)
        anchors_xc_yc = paddle.to_tensor(anchors_xc_yc, place=paddle.CPUPlace())
        gt_bboxes_xc_yc = paddle.to_tensor(
            gt_bboxes_xc_yc, place=paddle.CPUPlace())

        try:
            from rbox_iou_ops import rbox_iou
        except Exception as e:
            print('import custom_ops error', e)
            sys.exit(-1)

        iou = rbox_iou(gt_bboxes_xc_yc, anchors_xc_yc)
        iou = iou.numpy()
        iou = iou.T

        # every gt's anchor's index
        gt_bbox_anchor_inds = iou.argmax(axis=0)
        gt_bbox_anchor_iou = iou[gt_bbox_anchor_inds, np.arange(iou.shape[1])]
        gt_bbox_anchor_iou_inds = np.where(iou == gt_bbox_anchor_iou)[0]

        # every anchor's gt bbox's index
        anchor_gt_bbox_inds = iou.argmax(axis=1)
        anchor_gt_bbox_iou = iou[np.arange(iou.shape[0]), anchor_gt_bbox_inds]

        # (1) set labels=-2 as default
        labels = np.ones((iou.shape[0], ), dtype=np.int32) * ignore_iof_thr

        # (2) assign ignore
        labels[anchor_gt_bbox_iou < min_iou_thr] = ignore_iof_thr

        # (3) assign neg_ids -1
        assign_neg_ids1 = anchor_gt_bbox_iou >= min_iou_thr
        assign_neg_ids2 = anchor_gt_bbox_iou < neg_iou_thr
        assign_neg_ids = np.logical_and(assign_neg_ids1, assign_neg_ids2)
        labels[assign_neg_ids] = -1

        # anchor_gt_bbox_iou_inds
        # (4) assign max_iou as pos_ids >=0
        anchor_gt_bbox_iou_inds = anchor_gt_bbox_inds[gt_bbox_anchor_iou_inds]
        # gt_bbox_anchor_iou_inds = np.logical_and(gt_bbox_anchor_iou_inds, anchor_gt_bbox_iou >= min_iou_thr)
        labels[gt_bbox_anchor_iou_inds] = gt_lables[anchor_gt_bbox_iou_inds]

        # (5) assign >= pos_iou_thr as pos_ids
        iou_pos_iou_thr_ids = anchor_gt_bbox_iou >= pos_iou_thr
        iou_pos_iou_thr_ids_box_inds = anchor_gt_bbox_inds[iou_pos_iou_thr_ids]
        labels[iou_pos_iou_thr_ids] = gt_lables[iou_pos_iou_thr_ids_box_inds]
        return anchor_gt_bbox_inds, anchor_gt_bbox_iou, labels

    def __call__(self, anchors, gt_bboxes, gt_labels, is_crowd):

        assert anchors.ndim == 2
        assert anchors.shape[1] == 5
        assert gt_bboxes.ndim == 2
        assert gt_bboxes.shape[1] == 5

        pos_iou_thr = self.pos_iou_thr
        neg_iou_thr = self.neg_iou_thr
        min_iou_thr = self.min_iou_thr
        ignore_iof_thr = self.ignore_iof_thr

        anchor_num = anchors.shape[0]
        anchors_inds = self.anchor_valid(anchors)
        anchors = anchors[anchors_inds]
        gt_bboxes = gt_bboxes
        is_crowd_slice = is_crowd
        not_crowd_inds = np.where(is_crowd_slice == 0)

        # Step1: match anchor and gt_bbox
        anchor_gt_bbox_inds, anchor_gt_bbox_iou, labels = self.assign_anchor(
            anchors, gt_bboxes,
            gt_labels.reshape(-1), pos_iou_thr, neg_iou_thr, min_iou_thr,
            ignore_iof_thr)

        # Step2: sample anchor
        pos_inds = np.where(labels >= 0)[0]
        neg_inds = np.where(labels == -1)[0]

        # Step3: make output
        anchors_num = anchors.shape[0]
        bbox_targets = np.zeros_like(anchors)
        bbox_weights = np.zeros_like(anchors)
        pos_labels = np.ones(anchors_num, dtype=np.int32) * -1
        pos_labels_weights = np.zeros(anchors_num, dtype=np.float32)

        pos_sampled_anchors = anchors[pos_inds]
        #print('ancho target pos_inds', pos_inds, len(pos_inds))
        pos_sampled_gt_boxes = gt_bboxes[anchor_gt_bbox_inds[pos_inds]]
        if len(pos_inds) > 0:
            pos_bbox_targets = bbox_utils.rbox2delta(pos_sampled_anchors,
                                                     pos_sampled_gt_boxes)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0

            pos_labels[pos_inds] = labels[pos_inds]
            pos_labels_weights[pos_inds] = 1.0

        if len(neg_inds) > 0:
            pos_labels_weights[neg_inds] = 1.0
        return (pos_labels, pos_labels_weights, bbox_targets, bbox_weights,
                pos_inds, neg_inds)