pooling.cc 35.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/pooling.h"
C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

D
dengkaipeng 已提交
22 23 24 25 26 27 28 29 30 31
static inline int ADAPT_START_INDEX(int ph, int input_size, int output_size) {
  return static_cast<int>(
      floor(static_cast<float>(ph * input_size) / output_size));
}

static inline int ADAPT_END_INDEX(int ph, int input_size, int output_size) {
  return static_cast<int>(
      ceil(static_cast<float>((ph + 1) * input_size) / output_size));
}

C
chengduoZH 已提交
32 33 34 35 36
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
37
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
38
class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
39
 public:
Q
QI JUN 已提交
40
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
41
                  const framework::Tensor& input, const std::vector<int>& ksize,
42 43
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
D
dengkaipeng 已提交
44
                  bool exclusive, bool adaptive, framework::Tensor* output) {
45 46 47
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
48 49 50
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
51 52 53 54 55 56 57 58 59 60 61
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
62
    T* output_data = output->mutable_data<T>(context.GetPlace());
63 64 65 66

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
67 68 69 70 71 72 73 74
          if (adaptive) {
            int hstart = ADAPT_START_INDEX(ph, input_height, output_height);
            int hend = ADAPT_END_INDEX(ph, input_height, output_height);
          } else {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
          }
75
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
76 77 78 79 80 81 82 83
            if (adaptive) {
              int wstart = ADAPT_START_INDEX(pw, input_width, output_width);
              int wend = ADAPT_END_INDEX(pw, input_width, output_width);
            } else {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
            }
84 85

            T ele = pool_process.initial();
86 87
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduo 已提交
88
                pool_process.compute(input_data[h * input_width + w], &ele);
89 90
              }
            }
D
dengkaipeng 已提交
91 92 93
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
C
chengduo 已提交
94
            pool_process.finalize(static_cast<T>(pool_size), &ele);
95 96 97 98 99 100 101 102 103 104
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
105 106 107 108 109
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
110
template <typename PoolProcess, class T>
Q
QI JUN 已提交
111
class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
112
 public:
C
chengduo 已提交
113 114 115 116 117
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
D
dengkaipeng 已提交
118
      bool exclusive, bool adaptive, framework::Tensor* input_grad) {
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
137
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
138 139 140 141

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
142 143 144 145 146 147 148 149
          if (adaptive) {
            int hstart = ADAPT_START_INDEX(ph, input_height, output_height);
            int hend = ADAPT_END_INDEX(ph, input_height, output_height);
          } else {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
          }
150
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
151 152 153 154 155 156 157 158 159 160 161
            if (adaptive) {
              int wstart = ADAPT_START_INDEX(pw, input_width, output_width);
              int wend = ADAPT_END_INDEX(pw, input_width, output_width);
            } else {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
            }
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
162
            float scale = 1.0 / pool_size;
163 164
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
165 166 167 168
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
C
chengduo 已提交
169 170
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
171 172 173 174 175 176 177 178 179 180 181 182 183
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
184 185 186 187 188
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
189
template <class T>
Q
QI JUN 已提交
190
class MaxPool2dGradFunctor<platform::CPUDeviceContext, T> {
191
 public:
C
chengduo 已提交
192 193 194 195 196
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
215
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
250 251
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
252

Q
QI JUN 已提交
253
template class Pool2dFunctor<platform::CPUDeviceContext,
254
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
255
template class Pool2dFunctor<platform::CPUDeviceContext,
256
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
257 258 259 260 261 262 263
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CPUDeviceContext,
264
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
265
template class Pool2dFunctor<platform::CPUDeviceContext,
266
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
267 268 269 270 271 272
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
273

C
chengduoZH 已提交
274 275 276 277 278
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
279
template <typename PoolProcess, class T>
Q
QI JUN 已提交
280
class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
281
 public:
Q
QI JUN 已提交
282
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
283
                  const framework::Tensor& input, const std::vector<int>& ksize,
284 285
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
D
dengkaipeng 已提交
286
                  bool exclusive, bool adaptive, framework::Tensor* output) {
287 288 289 290
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
291 292 293 294
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
295 296 297 298 299 300 301 302 303 304 305 306 307 308
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
309
    T* output_data = output->mutable_data<T>(context.GetPlace());
310 311 312 313

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
314 315 316 317 318 319 320 321
          if (adaptive) {
            int dstart = ADAPT_START_INDEX(pd, input_depth, output_depth);
            int dend = ADAPT_END_INDEX(pd, input_depth, output_depth);
          } else {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
          }
322
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
323 324 325 326 327 328 329 330
            if (adaptive) {
              int hstart = ADAPT_START_INDEX(ph, input_height, output_height);
              int hend = ADAPT_END_INDEX(ph, input_height, output_height);
            } else {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
331
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
332 333 334 335 336 337 338 339
              if (adaptive) {
                int wstart = ADAPT_START_INDEX(pw, input_width, output_width);
                int wend = ADAPT_END_INDEX(pw, input_width, output_width);
              } else {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
340
              int output_idx = (pd * output_height + ph) * output_width + pw;
341
              T ele = pool_process.initial();
342 343 344
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
345
                    pool_process.compute(
C
chengduo 已提交
346 347
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
348 349 350
                  }
                }
              }
351
              int pool_size =
D
dengkaipeng 已提交
352
                  (exclusive || adaptive)
353 354
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
355
              pool_process.finalize(static_cast<T>(pool_size), &ele);
356 357 358 359 360 361 362 363 364 365 366
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
367 368 369 370 371
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
372
template <typename PoolProcess, class T>
Q
QI JUN 已提交
373
class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
374
 public:
C
chengduo 已提交
375 376 377 378 379
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, PoolProcess pool_grad_process,
D
dengkaipeng 已提交
380
      bool exclusive, bool adaptive, framework::Tensor* input_grad) {
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
404
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
405 406 407 408

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
409 410 411 412 413 414 415 416
          if (adaptive) {
            int dstart = ADAPT_START_INDEX(pd, input_depth, output_depth);
            int dend = ADAPT_END_INDEX(pd, input_depth, output_depth);
          } else {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
          }
417
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
418 419 420 421 422 423 424 425
            if (adaptive) {
              int hstart = ADAPT_START_INDEX(ph, input_height, output_height);
              int hend = ADAPT_END_INDEX(ph, input_height, output_height);
            } else {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
426
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
427 428 429 430 431 432 433 434
              if (adaptive) {
                int wstart = ADAPT_START_INDEX(pw, input_width, output_width);
                int wend = ADAPT_END_INDEX(pw, input_width, output_width);
              } else {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
435

436
              int pool_size =
D
dengkaipeng 已提交
437
                  (exclusive || adaptive)
438 439
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
440
              float scale = 1.0 / pool_size;
441 442 443 444 445 446
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
447
                    pool_grad_process.compute(
448
                        input_data[input_idx], output_data[output_idx],
C
chengduo 已提交
449 450
                        output_grad_data[output_idx], static_cast<T>(scale),
                        input_grad_data + input_idx);
451 452 453 454 455 456
                  }
                }
              }
            }
          }
        }
457 458 459 460
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
461 462 463 464 465
      }
    }
  }
};

C
chengduoZH 已提交
466 467 468 469 470
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
471
template <class T>
Q
QI JUN 已提交
472
class MaxPool3dGradFunctor<platform::CPUDeviceContext, T> {
473
 public:
C
chengduo 已提交
474 475 476 477 478
  void operator()(
      const platform::CPUDeviceContext& context, const framework::Tensor& input,
      const framework::Tensor& output, const framework::Tensor& output_grad,
      const std::vector<int>& ksize, const std::vector<int>& strides,
      const std::vector<int>& paddings, framework::Tensor* input_grad) {
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
502
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
546 547
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
548

Q
QI JUN 已提交
549
template class Pool3dFunctor<platform::CPUDeviceContext,
550
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
551
template class Pool3dFunctor<platform::CPUDeviceContext,
552
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
553 554 555 556 557 558 559
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CPUDeviceContext,
560
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
561
template class Pool3dFunctor<platform::CPUDeviceContext,
562
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
563 564 565 566 567 568
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
C
chengduoZH 已提交
569

C
chengduoZH 已提交
570 571 572 573 574
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
575
template <typename T1, typename T2>
Q
QI JUN 已提交
576
class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
577
 public:
Q
QI JUN 已提交
578
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
579 580
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
D
dengkaipeng 已提交
581 582
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
583 584 585
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
586 587 588
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
589 590 591 592 593 594 595 596 597
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
598 599 600
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
601 602 603 604

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
605 606 607 608 609 610 611 612
          if (adaptive) {
            int hstart = ADAPT_START_INDEX(ph, input_height, output_height);
            int hend = ADAPT_END_INDEX(ph, input_height, output_height);
          } else {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
          }
C
chengduoZH 已提交
613
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
614 615 616 617 618 619 620 621
            if (adaptive) {
              int wstart = ADAPT_START_INDEX(pw, input_width, output_width);
              int wend = ADAPT_END_INDEX(pw, input_width, output_width);
            } else {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
            }
C
chengduoZH 已提交
622

C
chengduoZH 已提交
623
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
646 647 648 649 650
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
651
template <typename T1, typename T2>
Q
QI JUN 已提交
652
class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
653
 public:
Q
QI JUN 已提交
654
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
655
                  const framework::Tensor& output_grad,
C
chengduo 已提交
656 657 658
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
659 660 661 662
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
663 664 665 666 667 668
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
669 670 671
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
691 692 693 694 695 696 697 698
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
C
chengduoZH 已提交
699

C
chengduoZH 已提交
700 701 702 703 704
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
705
template <typename T1, typename T2>
Q
QI JUN 已提交
706
class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
707
 public:
Q
QI JUN 已提交
708
  void operator()(const platform::CPUDeviceContext& context,
C
chengduo 已提交
709 710 711 712
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, framework::Tensor* output,
                  framework::Tensor* mask) {
C
chengduoZH 已提交
713 714 715 716
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
717 718 719 720
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
721 722 723 724 725 726 727 728 729 730 731 732
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
733 734 735
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
736 737 738 739

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
740 741 742 743 744 745 746 747
          if (adaptive) {
            int dstart = ADAPT_START_INDEX(pd, input_depth, output_depth);
            int dend = ADAPT_END_INDEX(pd, input_depth, output_depth);
          } else {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
          }
C
chengduoZH 已提交
748
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
749 750 751 752 753 754 755 756
            if (adaptive) {
              int hstart = ADAPT_START_INDEX(ph, input_height, output_height);
              int hend = ADAPT_END_INDEX(ph, input_height, output_height);
            } else {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
C
chengduoZH 已提交
757
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
758 759 760 761 762 763 764 765
              if (adaptive) {
                int wstart = ADAPT_START_INDEX(pw, input_width, output_width);
                int wend = ADAPT_END_INDEX(pw, input_width, output_width);
              } else {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
C
chengduoZH 已提交
766 767

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
768
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
795 796 797 798 799
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
800
template <typename T1, typename T2>
Q
QI JUN 已提交
801
class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
802
 public:
Q
QI JUN 已提交
803
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
804
                  const framework::Tensor& output_grad,
C
chengduo 已提交
805 806 807
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
808 809 810 811 812
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
813 814 815 816 817 818 819
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
820 821 822
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
845 846 847 848 849 850 851 852
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
853 854 855
}  // namespace math
}  // namespace operators
}  // namespace paddle