swin_transformer.py 25.3 KB
Newer Older
C
CHENSONG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
Wenyu 已提交
14 15 16 17 18
"""
This code is based on https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
Ths copyright of microsoft/Swin-Transformer is as follows:
MIT License [see LICENSE for details]
"""
C
CHENSONG 已提交
19 20 21 22 23 24 25 26

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable
import numpy as np

W
Wenyu 已提交
27 28 29
from .transformer_utils import DropPath, Identity
from .transformer_utils import add_parameter, to_2tuple
from .transformer_utils import ones_, zeros_, trunc_normal_
C
CHENSONG 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65


class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size
    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.reshape(
W
Wenyu 已提交
66
        [-1, H // window_size, window_size, W // window_size, window_size, C])
C
CHENSONG 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape(
        [-1, window_size, window_size, C])
    return windows


def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image
    Returns:
        x: (B, H, W, C)
    """
W
Wenyu 已提交
82
    _, _, _, C = windows.shape
C
CHENSONG 已提交
83 84
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.reshape(
W
Wenyu 已提交
85 86
        [-1, H // window_size, W // window_size, window_size, window_size, C])
    x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, H, W, C])
C
CHENSONG 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    return x


class WindowAttention(nn.Layer):
    """ Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self,
                 dim,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = add_parameter(
            self,
            paddle.zeros(((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                          num_heads)))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = paddle.arange(self.window_size[0])
        coords_w = paddle.arange(self.window_size[1])
        coords = paddle.stack(paddle.meshgrid(
            [coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = paddle.flatten(coords, 1)  # 2, Wh*Ww
        coords_flatten_1 = coords_flatten.unsqueeze(axis=2)
        coords_flatten_2 = coords_flatten.unsqueeze(axis=1)
        relative_coords = coords_flatten_1 - coords_flatten_2
        relative_coords = relative_coords.transpose(
            [1, 2, 0])  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[
            0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        self.relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index",
                             self.relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table)
        self.softmax = nn.Softmax(axis=-1)

    def forward(self, x, mask=None):
        """ Forward function.
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(
W
Wenyu 已提交
161
            [-1, N, 3, self.num_heads, C // self.num_heads]).transpose(
C
CHENSONG 已提交
162 163 164 165 166 167
                [2, 0, 3, 1, 4])
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = paddle.mm(q, k.transpose([0, 1, 3, 2]))

W
Wenyu 已提交
168
        index = self.relative_position_index.flatten()
C
CHENSONG 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181

        relative_position_bias = paddle.index_select(
            self.relative_position_bias_table, index)
        relative_position_bias = relative_position_bias.reshape([
            self.window_size[0] * self.window_size[1],
            self.window_size[0] * self.window_size[1], -1
        ])  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.transpose(
            [2, 0, 1])  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
W
Wenyu 已提交
182
            attn = attn.reshape([-1, nW, self.num_heads, N, N
C
CHENSONG 已提交
183 184 185 186 187 188 189 190 191
                                 ]) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.reshape([-1, self.num_heads, N, N])
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
W
Wenyu 已提交
192
        x = paddle.mm(attn, v).transpose([0, 2, 1, 3]).reshape([-1, N, C])
C
CHENSONG 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Layer):
    """ Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Layer, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self,
                 dim,
                 num_heads,
                 window_size=7,
                 shift_size=0,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)

        self.H = None
        self.W = None

    def forward(self, x, mask_matrix):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
            mask_matrix: Attention mask for cyclic shift.
        """
        B, L, C = x.shape
        H, W = self.H, self.W
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
W
Wenyu 已提交
270
        x = x.reshape([-1, H, W, C])
C
CHENSONG 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

        # pad feature maps to multiples of window size
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, [0, pad_l, 0, pad_b, 0, pad_r, 0, pad_t])
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = paddle.roll(
                x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))
            attn_mask = mask_matrix
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(
            shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.reshape(
W
Wenyu 已提交
292
            [x_windows.shape[0], self.window_size * self.window_size,
C
CHENSONG 已提交
293 294 295 296 297 298 299 300
             C])  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(
            x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.reshape(
W
Wenyu 已提交
301
            [x_windows.shape[0], self.window_size, self.window_size, C])
C
CHENSONG 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        shifted_x = window_reverse(attn_windows, self.window_size, Hp,
                                   Wp)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = paddle.roll(
                shifted_x,
                shifts=(self.shift_size, self.shift_size),
                axis=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :]

W
Wenyu 已提交
317
        x = x.reshape([-1, H * W, C])
C
CHENSONG 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchMerging(nn.Layer):
    r""" Patch Merging Layer.
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Layer, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

W
Wenyu 已提交
348
        x = x.reshape([-1, H, W, C])
C
CHENSONG 已提交
349 350 351 352 353 354 355 356 357 358 359

        # padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            x = F.pad(x, [0, 0, 0, W % 2, 0, H % 2])

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = paddle.concat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
W
Wenyu 已提交
360
        x = x.reshape([-1, H * W // 4, 4 * C])  # B H/2*W/2 4*C
C
CHENSONG 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        x = self.norm(x)
        x = self.reduction(x)

        return x


class BasicLayer(nn.Layer):
    """ A basic Swin Transformer layer for one stage.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None
    """

    def __init__(self,
                 dim,
                 depth,
                 num_heads,
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None):
        super().__init__()
        self.window_size = window_size
        self.shift_size = window_size // 2
        self.depth = depth

        # build blocks
        self.blocks = nn.LayerList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i]
                if isinstance(drop_path, np.ndarray) else drop_path,
                norm_layer=norm_layer) for i in range(depth)
        ])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, H, W):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """

        # calculate attention mask for SW-MSA
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
W
wangguanzhong 已提交
437
        img_mask = paddle.zeros([1, Hp, Wp, 1], dtype='float32')  # 1 Hp Wp 1
C
CHENSONG 已提交
438 439 440 441 442 443 444 445 446
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
W
Wenyu 已提交
447 448 449 450 451
                try:
                    img_mask[:, h, w, :] = cnt
                except:
                    pass

C
CHENSONG 已提交
452
                cnt += 1
W
Wenyu 已提交
453

C
CHENSONG 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        mask_windows = window_partition(
            img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.reshape(
            [-1, self.window_size * self.window_size])
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        huns = -100.0 * paddle.ones_like(attn_mask)
        attn_mask = huns * (attn_mask != 0).astype("float32")

        for blk in self.blocks:
            blk.H, blk.W = H, W
            x = blk(x, attn_mask)
        if self.downsample is not None:
            x_down = self.downsample(x, H, W)
            Wh, Ww = (H + 1) // 2, (W + 1) // 2
            return x, H, W, x_down, Wh, Ww
        else:
            return x, H, W, x, H, W


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding
    Args:
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Layer, optional): Normalization layer. Default: None
    """

    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2D(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1])
        if W % self.patch_size[1] != 0:
W
Wenyu 已提交
501
            x = F.pad(x, [0, self.patch_size[1] - W % self.patch_size[1], 0, 0])
C
CHENSONG 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        if H % self.patch_size[0] != 0:
            x = F.pad(x, [0, 0, 0, self.patch_size[0] - H % self.patch_size[0]])

        x = self.proj(x)
        if self.norm is not None:
            _, _, Wh, Ww = x.shape
            x = x.flatten(2).transpose([0, 2, 1])
            x = self.norm(x)
            x = x.transpose([0, 2, 1]).reshape([-1, self.embed_dim, Wh, Ww])

        return x


@register
@serializable
class SwinTransformer(nn.Layer):
    """ Swin Transformer
        A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
    """

    def __init__(self,
                 pretrain_img_size=224,
                 patch_size=4,
                 in_chans=3,
                 embed_dim=96,
                 depths=[2, 2, 6, 2],
                 num_heads=[3, 6, 12, 24],
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.2,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 out_indices=(0, 1, 2, 3),
                 frozen_stages=-1,
                 pretrained=None):
        super(SwinTransformer, self).__init__()

        self.pretrain_img_size = pretrain_img_size
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            pretrain_img_size = to_2tuple(pretrain_img_size)
            patch_size = to_2tuple(patch_size)
            patches_resolution = [
                pretrain_img_size[0] // patch_size[0],
                pretrain_img_size[1] // patch_size[1]
            ]

            self.absolute_pos_embed = add_parameter(
                self,
                paddle.zeros((1, embed_dim, patches_resolution[0],
                              patches_resolution[1])))
            trunc_normal_(self.absolute_pos_embed)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = np.linspace(0, drop_path_rate,
                          sum(depths))  # stochastic depth decay rule

        # build layers
        self.layers = nn.LayerList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2**i_layer),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging
                if (i_layer < self.num_layers - 1) else None)
            self.layers.append(layer)

        num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
        self.num_features = num_features

        # add a norm layer for each output
        for i_layer in out_indices:
            layer = norm_layer(num_features[i_layer])
            layer_name = f'norm{i_layer}'
            self.add_sublayer(layer_name, layer)

        self.apply(self._init_weights)
        self._freeze_stages()
        if pretrained:
            if 'http' in pretrained:  #URL
                path = paddle.utils.download.get_weights_path_from_url(
                    pretrained)
            else:  #model in local path
                path = pretrained
            self.set_state_dict(paddle.load(path))

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
W
Wenyu 已提交
642
                param.stop_gradient = True
C
CHENSONG 已提交
643 644

        if self.frozen_stages >= 1 and self.ape:
W
Wenyu 已提交
645
            self.absolute_pos_embed.stop_gradient = True
C
CHENSONG 已提交
646 647 648 649 650 651 652

        if self.frozen_stages >= 2:
            self.pos_drop.eval()
            for i in range(0, self.frozen_stages - 1):
                m = self.layers[i]
                m.eval()
                for param in m.parameters():
W
Wenyu 已提交
653
                    param.stop_gradient = True
C
CHENSONG 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward(self, x):
        """Forward function."""
        x = self.patch_embed(x['image'])
W
Wenyu 已提交
667
        B, _, Wh, Ww = x.shape
C
CHENSONG 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        if self.ape:
            # interpolate the position embedding to the corresponding size
            absolute_pos_embed = F.interpolate(
                self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
            x = (x + absolute_pos_embed).flatten(2).transpose([0, 2, 1])
        else:
            x = x.flatten(2).transpose([0, 2, 1])
        x = self.pos_drop(x)
        outs = []
        for i in range(self.num_layers):
            layer = self.layers[i]
            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                x_out = norm_layer(x_out)
                out = x_out.reshape((-1, H, W, self.num_features[i])).transpose(
                    (0, 3, 1, 2))
                outs.append(out)

        return tuple(outs)

    @property
    def out_shape(self):
        out_strides = [4, 8, 16, 32]
        return [
            ShapeSpec(
                channels=self.num_features[i], stride=out_strides[i])
            for i in self.out_indices
        ]