mot_sde_infer.py 34.9 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26 27 28 29
from preprocess import decode_image

# add python path
import sys
W
wangguanzhong 已提交
30
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
31
sys.path.insert(0, parent_path)
32

W
wangguanzhong 已提交
33 34
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
from mot_utils import argsparser, Timer, get_current_memory_mb, video2frames, _is_valid_video
F
Feng Ni 已提交
35
from mot.tracker import JDETracker, DeepSORTTracker, OCSORTTracker
36
from mot.utils import MOTTimer, write_mot_results, get_crops, clip_box, flow_statistic
W
wangguanzhong 已提交
37
from mot.visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60 61 62 63 64 65 66
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
67 68 69 70 71 72 73 74 75 76
            counting in MOT, and the video should be taken by a static camera.
        do_break_in_counting(bool): Whether counting the numbers of identifiers break in
            the area, default as False,only support single class counting in MOT,
            and the video should be taken by a static camera.
        region_type (str): Area type for entrance counting or break in counting, 'horizontal'
            and 'vertical' used when do entrance counting. 'custom' used when do break in counting. 
            Note that only support single-class MOT, and the video should be taken by a static camera.
        region_polygon (list): Clockwise point coords (x0,y0,x1,y1...) of polygon of area when
            do_break_in_counting. Note that only support single-class MOT and
            the video should be taken by a static camera.
77 78
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
79 80 81 82
    """

    def __init__(self,
                 model_dir,
83
                 tracker_config,
84
                 device='CPU',
85
                 run_mode='paddle',
86 87
                 batch_size=1,
                 trt_min_shape=1,
88 89
                 trt_max_shape=1280,
                 trt_opt_shape=640,
90 91
                 trt_calib_mode=False,
                 cpu_threads=1,
92 93 94
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
95 96 97 98 99
                 save_images=False,
                 save_mot_txts=False,
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False,
100 101 102
                 do_break_in_counting=False,
                 region_type='horizontal',
                 region_polygon=[],
103 104
                 reid_model_dir=None,
                 mtmct_dir=None):
105 106 107 108 109 110 111 112 113 114
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
115 116 117
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
118 119 120 121 122
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
123 124 125 126 127 128 129
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
130

131 132 133 134
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

135
        # reid config
136 137 138 139 140 141
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
142
                batch_size=50,  # reid_batch_size
143 144 145 146 147 148 149 150 151
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)
152 153 154
        else:
            self.reid_pred_config = None
            self.reid_predictor = None
155

156 157 158 159 160 161
        assert tracker_config is not None, 'Note that tracker_config should be set.'
        self.tracker_config = tracker_config
        tracker_cfg = yaml.safe_load(open(self.tracker_config))
        cfg = tracker_cfg[tracker_cfg['type']]

        # tracker config
162 163
        self.use_deepsort_tracker = True if tracker_cfg[
            'type'] == 'DeepSORTTracker' else False
F
Feng Ni 已提交
164 165 166
        self.use_ocsort_tracker = True if tracker_cfg[
            'type'] == 'OCSORTTracker' else False

167
        if self.use_deepsort_tracker:
168 169
            if self.reid_pred_config is not None and hasattr(
                    self.reid_pred_config, 'tracker'):
170 171
                cfg = self.reid_pred_config.tracker
            budget = cfg.get('budget', 100)
172 173
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)
174 175 176
            matching_threshold = cfg.get('matching_threshold', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
177 178

            self.tracker = DeepSORTTracker(
179
                budget=budget,
180 181
                max_age=max_age,
                max_iou_distance=max_iou_distance,
182 183
                matching_threshold=matching_threshold,
                min_box_area=min_box_area,
184
                vertical_ratio=vertical_ratio, )
F
Feng Ni 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

        elif self.use_ocsort_tracker:
            det_thresh = cfg.get('det_thresh', 0.4)
            max_age = cfg.get('max_age', 30)
            min_hits = cfg.get('min_hits', 3)
            iou_threshold = cfg.get('iou_threshold', 0.3)
            delta_t = cfg.get('delta_t', 3)
            inertia = cfg.get('inertia', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
            use_byte = cfg.get('use_byte', False)

            self.tracker = OCSORTTracker(
                det_thresh=det_thresh,
                max_age=max_age,
                min_hits=min_hits,
                iou_threshold=iou_threshold,
                delta_t=delta_t,
                inertia=inertia,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                use_byte=use_byte)
207
        else:
208
            # use ByteTracker
209 210
            use_byte = cfg.get('use_byte', False)
            det_thresh = cfg.get('det_thresh', 0.3)
211 212
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
213 214 215 216 217 218
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
219
                det_thresh=det_thresh,
220 221 222 223 224
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
225 226
                low_conf_thres=low_conf_thres, )

227 228 229 230 231
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
F
Feng Ni 已提交
232 233 234
        keep_idx = result['boxes'][:, 1] > self.threshold
        result['boxes'] = result['boxes'][keep_idx]
        np_boxes_num = [len(result['boxes'])]
235 236 237 238 239 240 241
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
242
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
243 244 245 246 247
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
248 249

        if len(keep_idx[0]) == 0:
250 251 252
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
253

254 255
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
256

257
        w, h = self.tracker.input_size
258
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
259

260
        # to keep fast speed, only use topk crops
261
        crops = crops[:50]  # reid_batch_size
262 263
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
264

265
        input_names = self.reid_predictor.get_input_names()
266
        for i in range(len(input_names)):
267 268
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
269

W
wangguanzhong 已提交
270
        # model prediction
271
        for i in range(repeats):
272 273
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
274 275
            feature_tensor = self.reid_predictor.get_output_handle(output_names[
                0])
276 277
            pred_embs = feature_tensor.copy_to_cpu()

278 279 280 281
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
282
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
283 284
        pred_embs = det_results.get('embeddings', None)

285
        if self.use_deepsort_tracker:
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
318 319
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids,
                                             online_feats):
320 321 322 323 324 325 326 327
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
328
            return tracking_outs
F
Feng Ni 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

        elif self.use_ocsort_tracker:
            # use OCSORTTracker, only support singe class
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for t in online_targets:
                tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
                tscore = float(t[4])
                tid = int(t[5])
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                if tlwh[2] * tlwh[3] > 0:
                    online_tlwhs[0].append(tlwh)
                    online_ids[0].append(tid)
                    online_scores[0].append(tscore)
            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            return tracking_outs

355
        else:
356 357 358 359
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
360
            if self.do_mtmct:
361 362
                online_tlbrs, online_feats = defaultdict(list), defaultdict(
                    list)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
378 379 380 381 382 383 384 385 386 387 388 389 390 391
                    if self.do_mtmct:
                        online_tlbrs[cls_id].append(t.tlbr)
                        online_feats[cls_id].append(t.curr_feat)

            if self.do_mtmct:
                assert self.num_classes == 1, 'MTMCT only support single class.'
                tracking_outs = {
                    'online_tlwhs': online_tlwhs[0],
                    'online_scores': online_scores[0],
                    'online_ids': online_ids[0],
                }
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']
                tracking_outs['feat_data'] = {}
392 393
                for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0],
                                             online_feats[0]):
394 395 396 397 398 399 400 401 402
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
                return tracking_outs
403

404 405 406 407 408 409 410
            else:
                tracking_outs = {
                    'online_tlwhs': online_tlwhs,
                    'online_scores': online_scores,
                    'online_ids': online_ids,
                }
                return tracking_outs
411

412 413 414 415 416 417 418 419 420 421
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
422
            mot_features_dict = {}  # cid_tid_fid feats
423
        else:
424 425 426 427 428 429 430
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
431
            if run_benchmark:
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
468

469
            else:
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
492 493 494 495

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
496

497 498 499 500 501 502 503
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
504
                if len(image_list) > 1 and frame_id % 10 == 0:
505 506
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
507 508
                if isinstance(online_tlwhs, defaultdict):
                    im = plot_tracking_dict(
509
                        frame,
510
                        num_classes,
511 512 513
                        online_tlwhs,
                        online_ids,
                        online_scores,
514
                        frame_id=frame_id,
515
                        ids2names=ids2names)
516
                else:
517
                    im = plot_tracking(
518 519 520 521
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
522 523
                        frame_id=frame_id,
                        ids2names=ids2names)
524 525 526 527 528
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
529

530 531 532 533
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
552 553
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
554 555 556 557
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
558
        results = defaultdict(list)
559
        num_classes = self.num_classes
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels

        center_traj = None
        entrance = None
        records = None
        if self.draw_center_traj:
            center_traj = [{} for i in range(num_classes)]
        if num_classes == 1:
            id_set = set()
            interval_id_set = set()
            in_id_list = list()
            out_id_list = list()
            prev_center = dict()
            records = list()
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
            if self.do_entrance_counting or self.do_break_in_counting:
                if self.region_type == 'horizontal':
                    entrance = [0, height / 2., width, height / 2.]
                elif self.region_type == 'vertical':
                    entrance = [width / 2, 0., width / 2, height]
                elif self.region_type == 'custom':
                    entrance = []
                    assert len(
                        self.region_polygon
                    ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                    for i in range(0, len(self.region_polygon), 2):
                        entrance.append([
                            self.region_polygon[i], self.region_polygon[i + 1]
                        ])
                    entrance.append([width, height])
                else:
                    raise ValueError("region_type:{} is not supported.".format(
                        self.region_type))

594 595
        video_fps = fps

596 597 598 599 600 601 602
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1
603

604 605
            timer.tic()
            seq_name = video_out_name.split('.')[0]
606 607
            mot_results = self.predict_image(
                [frame], visual=False, seq_name=seq_name)
608 609
            timer.toc()

610 611 612
            # bs=1 in MOT model
            online_tlwhs, online_scores, online_ids = mot_results[0]

F
Feng Ni 已提交
613
            # flow statistic for one class, and only for bytetracker
F
Feng Ni 已提交
614
            if num_classes == 1 and not self.use_deepsort_tracker and not self.use_ocsort_tracker:
615 616 617 618
                result = (frame_id + 1, online_tlwhs[0], online_scores[0],
                          online_ids[0])
                statistic = flow_statistic(
                    result, self.secs_interval, self.do_entrance_counting,
619 620 621
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records, data_type, num_classes)
622 623
                records = statistic['records']

624
            fps = 1. / timer.duration
F
Feng Ni 已提交
625 626
            if self.use_deepsort_tracker or self.use_ocsort_tracker:
                # use DeepSORTTracker or OCSORTTracker, only support singe class
627 628
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
629 630 631 632 633 634
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
635
                    fps=fps,
636
                    ids2names=ids2names,
637 638
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance)
639 640 641 642
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
643 644
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
645 646 647 648 649 650 651 652
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
653 654 655 656 657
                    ids2names=ids2names,
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance,
                    records=records,
                    center_traj=center_traj)
658

659 660 661 662 663
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')
            write_mot_results(result_filename, results)

            result_filename = os.path.join(
                self.output_dir,
                video_out_name.split('.')[-2] + '_flow_statistic.txt')
            f = open(result_filename, 'w')
            for line in records:
                f.write(line)
            print('Flow statistic save in {}'.format(result_filename))
            f.close()

679 680
        writer.release()

681 682 683 684 685 686 687
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
688

689 690 691
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
692

693 694 695
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
696

697 698 699
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
700

701 702
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
703

704 705 706
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
723 724
            assert os.path.isdir(fpath), '{} should be a directory'.format(
                fpath)
725 726 727 728 729
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

730 731
            mot_features_dict = self.predict_image(
                image_list, visual=False, seq_name=seq)
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
750
            scene_cluster,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
767

768
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
769 770 771 772 773 774 775 776
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
777
            camera_results,
F
Feng Ni 已提交
778 779 780 781
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
782

783
def main():
784 785 786 787 788 789
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
790
        tracker_config=FLAGS.tracker_config,
791 792
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
793
        batch_size=1,
794 795 796 797 798
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
799 800
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
801 802 803 804 805 806
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts,
        draw_center_traj=FLAGS.draw_center_traj,
        secs_interval=FLAGS.secs_interval,
        do_entrance_counting=FLAGS.do_entrance_counting,
807 808 809
        do_break_in_counting=FLAGS.do_break_in_counting,
        region_type=FLAGS.region_type,
        region_polygon=FLAGS.region_polygon,
810
        reid_model_dir=FLAGS.reid_model_dir,
811
        mtmct_dir=FLAGS.mtmct_dir, )
812 813 814

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
815
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
816
    elif FLAGS.mtmct_dir is not None:
817
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
818
            mtmct_cfg = yaml.safe_load(f)
819
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
820 821
    else:
        # predict from image
822 823
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
824
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
825
        seq_name = FLAGS.image_dir.split('/')[-1]
826 827
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
828 829 830 831 832

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
833 834 835
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
836 837
                'precision': mode.split('_')[-1]
            }
838
            bench_log(detector, img_list, model_info, name='MOT')
839 840 841 842 843 844 845 846 847 848 849 850


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()