train.py 6.0 KB
Newer Older
F
FDInSky 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7 8 9
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

F
FDInSky 已提交
10 11 12 13 14
import time
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
15
import datetime
F
FDInSky 已提交
16
import numpy as np
17
from collections import deque
F
FDInSky 已提交
18 19
import paddle.fluid as fluid
from ppdet.core.workspace import load_config, merge_config, create
20
from ppdet.utils.stats import TrainingStats
F
FDInSky 已提交
21 22 23
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.utils.checkpoint import load_dygraph_ckpt, save_dygraph_ckpt
24 25 26 27 28
from paddle.fluid.dygraph.parallel import ParallelEnv
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
F
FDInSky 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "-ckpt_type",
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")

    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')

    args = parser.parse_args()
    return args


88
def run(FLAGS, cfg, place):
F
FDInSky 已提交
89 90 91 92 93 94 95 96
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

97
    if FLAGS.enable_ce:
F
FDInSky 已提交
98 99 100
        random.seed(0)
        np.random.seed(0)

101 102 103 104
    # Data 
    train_loader, step_per_epoch = create('TrainReader')(
        cfg['worker_num'], place, use_prefetch=cfg['use_prefetch'])

F
FDInSky 已提交
105 106
    # Model
    main_arch = cfg.architecture
107
    model = create(cfg.architecture)
F
FDInSky 已提交
108 109

    # Optimizer
110
    optimizer = create('Optimize')(model.parameters(), step_per_epoch)
F
FDInSky 已提交
111 112 113 114 115 116

    # Init Model & Optimzer   
    model = load_dygraph_ckpt(
        model,
        optimizer,
        cfg.pretrain_weights,
117 118
        ckpt_type=FLAGS.ckpt_type,
        load_static_weights=cfg.load_static_weights)
F
FDInSky 已提交
119

W
wangguanzhong 已提交
120
    # Parallel Model 
121
    if ParallelEnv().nranks > 1:
W
wangguanzhong 已提交
122 123 124
        strategy = fluid.dygraph.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

125
    # Run Train
F
FDInSky 已提交
126
    start_iter = 0
127 128 129
    time_stat = deque(maxlen=cfg.log_smooth_window)
    start_time = time.time()
    end_time = time.time()
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    for e_id in range(int(cfg.epoch)):
        for iter_id, data in enumerate(train_loader):
            start_time = end_time
            end_time = time.time()
            time_stat.append(end_time - start_time)
            time_cost = np.mean(time_stat)
            eta_sec = (cfg.epoch * step_per_epoch - iter_id) * time_cost
            eta = str(datetime.timedelta(seconds=int(eta_sec)))

            # Model Forward
            model.train()
            outputs = model(data, cfg['TrainReader']['inputs_def']['fields'],
                            'train')

            # Model Backward
            loss = outputs['loss']
            if ParallelEnv().nranks > 1:
                loss = model.scale_loss(loss)
                loss.backward()
                model.apply_collective_grads()
            else:
                loss.backward()
            optimizer.minimize(loss)
            model.clear_gradients()
            curr_lr = optimizer.current_step_lr()

            if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
                # Log state 
                if iter_id == 0:
                    train_stats = TrainingStats(cfg.log_smooth_window,
                                                outputs.keys())
                train_stats.update(outputs)
                logs = train_stats.log()
                if iter_id % cfg.log_iter == 0:
                    strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                        iter_id, curr_lr, logs, time_cost, eta)
                    logger.info(strs)

        # Save Stage 
S
sunxl1988 已提交
169
        if ParallelEnv().local_rank == 0:
170 171 172 173 174
            cfg_name = os.path.basename(FLAGS.config).split('.')[0]
            save_name = str(e_id + 1) if e_id + 1 != int(
                cfg.epoch) else "model_final"
            save_dir = os.path.join(cfg.save_dir, cfg_name, save_name)
            save_dygraph_ckpt(model, optimizer, save_dir)
F
FDInSky 已提交
175 176 177 178 179 180 181 182 183 184


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_gpu(cfg.use_gpu)
    check_version()

185
    place = fluid.CUDAPlace(ParallelEnv().dev_id) \
F
FDInSky 已提交
186 187 188
                    if cfg.use_gpu else fluid.CPUPlace()

    with fluid.dygraph.guard(place):
189
        run(FLAGS, cfg, place)
F
FDInSky 已提交
190 191 192 193


if __name__ == "__main__":
    main()